| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwm1geoser.a |  |-  ( ph -> A e. CC ) | 
						
							| 2 |  | pwm1geoser.n |  |-  ( ph -> N e. NN0 ) | 
						
							| 3 | 2 | nn0zd |  |-  ( ph -> N e. ZZ ) | 
						
							| 4 |  | 1exp |  |-  ( N e. ZZ -> ( 1 ^ N ) = 1 ) | 
						
							| 5 | 3 4 | syl |  |-  ( ph -> ( 1 ^ N ) = 1 ) | 
						
							| 6 | 5 | eqcomd |  |-  ( ph -> 1 = ( 1 ^ N ) ) | 
						
							| 7 | 6 | oveq2d |  |-  ( ph -> ( ( A ^ N ) - 1 ) = ( ( A ^ N ) - ( 1 ^ N ) ) ) | 
						
							| 8 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 9 |  | pwdif |  |-  ( ( N e. NN0 /\ A e. CC /\ 1 e. CC ) -> ( ( A ^ N ) - ( 1 ^ N ) ) = ( ( A - 1 ) x. sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( 1 ^ ( ( N - k ) - 1 ) ) ) ) ) | 
						
							| 10 | 2 1 8 9 | syl3anc |  |-  ( ph -> ( ( A ^ N ) - ( 1 ^ N ) ) = ( ( A - 1 ) x. sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( 1 ^ ( ( N - k ) - 1 ) ) ) ) ) | 
						
							| 11 |  | fzoval |  |-  ( N e. ZZ -> ( 0 ..^ N ) = ( 0 ... ( N - 1 ) ) ) | 
						
							| 12 | 3 11 | syl |  |-  ( ph -> ( 0 ..^ N ) = ( 0 ... ( N - 1 ) ) ) | 
						
							| 13 | 3 | adantr |  |-  ( ( ph /\ k e. ( 0 ..^ N ) ) -> N e. ZZ ) | 
						
							| 14 |  | elfzoelz |  |-  ( k e. ( 0 ..^ N ) -> k e. ZZ ) | 
						
							| 15 | 14 | adantl |  |-  ( ( ph /\ k e. ( 0 ..^ N ) ) -> k e. ZZ ) | 
						
							| 16 | 13 15 | zsubcld |  |-  ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( N - k ) e. ZZ ) | 
						
							| 17 |  | peano2zm |  |-  ( ( N - k ) e. ZZ -> ( ( N - k ) - 1 ) e. ZZ ) | 
						
							| 18 |  | 1exp |  |-  ( ( ( N - k ) - 1 ) e. ZZ -> ( 1 ^ ( ( N - k ) - 1 ) ) = 1 ) | 
						
							| 19 | 16 17 18 | 3syl |  |-  ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( 1 ^ ( ( N - k ) - 1 ) ) = 1 ) | 
						
							| 20 | 19 | oveq2d |  |-  ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( ( A ^ k ) x. ( 1 ^ ( ( N - k ) - 1 ) ) ) = ( ( A ^ k ) x. 1 ) ) | 
						
							| 21 | 1 | adantr |  |-  ( ( ph /\ k e. ( 0 ..^ N ) ) -> A e. CC ) | 
						
							| 22 |  | elfzonn0 |  |-  ( k e. ( 0 ..^ N ) -> k e. NN0 ) | 
						
							| 23 | 22 | adantl |  |-  ( ( ph /\ k e. ( 0 ..^ N ) ) -> k e. NN0 ) | 
						
							| 24 | 21 23 | expcld |  |-  ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( A ^ k ) e. CC ) | 
						
							| 25 | 24 | mulridd |  |-  ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( ( A ^ k ) x. 1 ) = ( A ^ k ) ) | 
						
							| 26 | 20 25 | eqtrd |  |-  ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( ( A ^ k ) x. ( 1 ^ ( ( N - k ) - 1 ) ) ) = ( A ^ k ) ) | 
						
							| 27 | 12 26 | sumeq12dv |  |-  ( ph -> sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( 1 ^ ( ( N - k ) - 1 ) ) ) = sum_ k e. ( 0 ... ( N - 1 ) ) ( A ^ k ) ) | 
						
							| 28 | 27 | oveq2d |  |-  ( ph -> ( ( A - 1 ) x. sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( 1 ^ ( ( N - k ) - 1 ) ) ) ) = ( ( A - 1 ) x. sum_ k e. ( 0 ... ( N - 1 ) ) ( A ^ k ) ) ) | 
						
							| 29 | 7 10 28 | 3eqtrd |  |-  ( ph -> ( ( A ^ N ) - 1 ) = ( ( A - 1 ) x. sum_ k e. ( 0 ... ( N - 1 ) ) ( A ^ k ) ) ) |