Metamath Proof Explorer


Theorem pwm1geoser

Description: The n-th power of a number decreased by 1 expressed by the finite geometric series 1 + A ^ 1 + A ^ 2 + ... + A ^ ( N - 1 ) . (Contributed by AV, 14-Aug-2021) (Proof shortened by AV, 19-Aug-2021)

Ref Expression
Hypotheses pwm1geoser.a φA
pwm1geoser.n φN0
Assertion pwm1geoser φAN1=A1k=0N1Ak

Proof

Step Hyp Ref Expression
1 pwm1geoser.a φA
2 pwm1geoser.n φN0
3 2 nn0zd φN
4 1exp N1N=1
5 3 4 syl φ1N=1
6 5 eqcomd φ1=1N
7 6 oveq2d φAN1=AN1N
8 1cnd φ1
9 pwdif N0A1AN1N=A1k0..^NAk1N-k-1
10 2 1 8 9 syl3anc φAN1N=A1k0..^NAk1N-k-1
11 fzoval N0..^N=0N1
12 3 11 syl φ0..^N=0N1
13 3 adantr φk0..^NN
14 elfzoelz k0..^Nk
15 14 adantl φk0..^Nk
16 13 15 zsubcld φk0..^NNk
17 peano2zm NkN-k-1
18 1exp N-k-11N-k-1=1
19 16 17 18 3syl φk0..^N1N-k-1=1
20 19 oveq2d φk0..^NAk1N-k-1=Ak1
21 1 adantr φk0..^NA
22 elfzonn0 k0..^Nk0
23 22 adantl φk0..^Nk0
24 21 23 expcld φk0..^NAk
25 24 mulridd φk0..^NAk1=Ak
26 20 25 eqtrd φk0..^NAk1N-k-1=Ak
27 12 26 sumeq12dv φk0..^NAk1N-k-1=k=0N1Ak
28 27 oveq2d φA1k0..^NAk1N-k-1=A1k=0N1Ak
29 7 10 28 3eqtrd φAN1=A1k=0N1Ak