Metamath Proof Explorer


Theorem geolim

Description: The partial sums in the infinite series 1 + A ^ 1 + A ^ 2 ... converge to ( 1 / ( 1 - A ) ) . (Contributed by NM, 15-May-2006)

Ref Expression
Hypotheses geolim.1 φA
geolim.2 φA<1
geolim.3 φk0Fk=Ak
Assertion geolim φseq0+F11A

Proof

Step Hyp Ref Expression
1 geolim.1 φA
2 geolim.2 φA<1
3 geolim.3 φk0Fk=Ak
4 nn0uz 0=0
5 0zd φ0
6 1 2 expcnv φn0An0
7 ax-1cn 1
8 subcl 1A1A
9 7 1 8 sylancr φ1A
10 1re 1
11 10 ltnri ¬1<1
12 fveq2 A=1A=1
13 abs1 1=1
14 12 13 eqtrdi A=1A=1
15 14 breq1d A=1A<11<1
16 11 15 mtbiri A=1¬A<1
17 16 necon2ai A<1A1
18 2 17 syl φA1
19 18 necomd φ1A
20 subeq0 1A1A=01=A
21 7 1 20 sylancr φ1A=01=A
22 21 necon3bid φ1A01A
23 19 22 mpbird φ1A0
24 1 9 23 divcld φA1A
25 nn0ex 0V
26 25 mptex n0An+11AV
27 26 a1i φn0An+11AV
28 oveq2 n=jAn=Aj
29 eqid n0An=n0An
30 ovex AjV
31 28 29 30 fvmpt j0n0Anj=Aj
32 31 adantl φj0n0Anj=Aj
33 expcl Aj0Aj
34 1 33 sylan φj0Aj
35 32 34 eqeltrd φj0n0Anj
36 expp1 Aj0Aj+1=AjA
37 1 36 sylan φj0Aj+1=AjA
38 1 adantr φj0A
39 34 38 mulcomd φj0AjA=AAj
40 37 39 eqtrd φj0Aj+1=AAj
41 40 oveq1d φj0Aj+11A=AAj1A
42 9 adantr φj01A
43 23 adantr φj01A0
44 38 34 42 43 div23d φj0AAj1A=A1AAj
45 41 44 eqtrd φj0Aj+11A=A1AAj
46 oveq1 n=jn+1=j+1
47 46 oveq2d n=jAn+1=Aj+1
48 47 oveq1d n=jAn+11A=Aj+11A
49 eqid n0An+11A=n0An+11A
50 ovex Aj+11AV
51 48 49 50 fvmpt j0n0An+11Aj=Aj+11A
52 51 adantl φj0n0An+11Aj=Aj+11A
53 32 oveq2d φj0A1An0Anj=A1AAj
54 45 52 53 3eqtr4d φj0n0An+11Aj=A1An0Anj
55 4 5 6 24 27 35 54 climmulc2 φn0An+11AA1A0
56 24 mul01d φA1A0=0
57 55 56 breqtrd φn0An+11A0
58 9 23 reccld φ11A
59 seqex seq0+FV
60 59 a1i φseq0+FV
61 peano2nn0 j0j+10
62 expcl Aj+10Aj+1
63 1 61 62 syl2an φj0Aj+1
64 63 42 43 divcld φj0Aj+11A
65 52 64 eqeltrd φj0n0An+11Aj
66 nn0cn j0j
67 66 adantl φj0j
68 pncan j1j+1-1=j
69 67 7 68 sylancl φj0j+1-1=j
70 69 oveq2d φj00j+1-1=0j
71 70 sumeq1d φj0k=0j+1-1Ak=k=0jAk
72 7 a1i φj01
73 72 63 42 43 divsubdird φj01Aj+11A=11AAj+11A
74 18 adantr φj0A1
75 61 adantl φj0j+10
76 38 74 75 geoser φj0k=0j+1-1Ak=1Aj+11A
77 52 oveq2d φj011An0An+11Aj=11AAj+11A
78 73 76 77 3eqtr4d φj0k=0j+1-1Ak=11An0An+11Aj
79 simpll φj0k0jφ
80 elfznn0 k0jk0
81 80 adantl φj0k0jk0
82 79 81 3 syl2anc φj0k0jFk=Ak
83 simpr φj0j0
84 83 4 eleqtrdi φj0j0
85 79 1 syl φj0k0jA
86 85 81 expcld φj0k0jAk
87 82 84 86 fsumser φj0k=0jAk=seq0+Fj
88 71 78 87 3eqtr3rd φj0seq0+Fj=11An0An+11Aj
89 4 5 57 58 60 65 88 climsubc2 φseq0+F11A0
90 58 subid1d φ11A0=11A
91 89 90 breqtrd φseq0+F11A