Metamath Proof Explorer


Theorem climmulc2

Description: Limit of a sequence multiplied by a constant C . Corollary 12-2.2 of Gleason p. 171. (Contributed by NM, 24-Sep-2005) (Revised by Mario Carneiro, 3-Feb-2014)

Ref Expression
Hypotheses climadd.1 Z=M
climadd.2 φM
climadd.4 φFA
climaddc1.5 φC
climaddc1.6 φGW
climaddc1.7 φkZFk
climmulc2.h φkZGk=CFk
Assertion climmulc2 φGCA

Proof

Step Hyp Ref Expression
1 climadd.1 Z=M
2 climadd.2 φM
3 climadd.4 φFA
4 climaddc1.5 φC
5 climaddc1.6 φGW
6 climaddc1.7 φkZFk
7 climmulc2.h φkZGk=CFk
8 0z 0
9 uzssz 0
10 zex V
11 9 10 climconst2 C0×CC
12 4 8 11 sylancl φ×CC
13 eluzelz kMk
14 13 1 eleq2s kZk
15 fvconst2g Ck×Ck=C
16 4 14 15 syl2an φkZ×Ck=C
17 4 adantr φkZC
18 16 17 eqeltrd φkZ×Ck
19 16 oveq1d φkZ×CkFk=CFk
20 7 19 eqtr4d φkZGk=×CkFk
21 1 2 12 5 3 18 6 20 climmul φGCA