Metamath Proof Explorer


Theorem prminf2

Description: The set of prime numbers is infinite. The proof of this variant of prminf is based on Goldbach's theorem goldbachth (via prmdvdsfmtnof1 and prmdvdsfmtnof1lem2 ), see Wikipedia "Fermat number", 4-Aug-2021, https://en.wikipedia.org/wiki/Fermat_number#Basic_properties . (Contributed by AV, 4-Aug-2021)

Ref Expression
Assertion prminf2 ℙ ∉ Fin

Proof

Step Hyp Ref Expression
1 eqid ( 𝑓 ∈ ran FermatNo ↦ inf ( { 𝑝 ∈ ℙ ∣ 𝑝𝑓 } , ℝ , < ) ) = ( 𝑓 ∈ ran FermatNo ↦ inf ( { 𝑝 ∈ ℙ ∣ 𝑝𝑓 } , ℝ , < ) )
2 1 prmdvdsfmtnof1 ( 𝑓 ∈ ran FermatNo ↦ inf ( { 𝑝 ∈ ℙ ∣ 𝑝𝑓 } , ℝ , < ) ) : ran FermatNo –1-1→ ℙ
3 ax-1 ( ℙ ∉ Fin → ( ( 𝑓 ∈ ran FermatNo ↦ inf ( { 𝑝 ∈ ℙ ∣ 𝑝𝑓 } , ℝ , < ) ) : ran FermatNo –1-1→ ℙ → ℙ ∉ Fin ) )
4 nnel ( ¬ ℙ ∉ Fin ↔ ℙ ∈ Fin )
5 fmtnoinf ran FermatNo ∉ Fin
6 f1fi ( ( ℙ ∈ Fin ∧ ( 𝑓 ∈ ran FermatNo ↦ inf ( { 𝑝 ∈ ℙ ∣ 𝑝𝑓 } , ℝ , < ) ) : ran FermatNo –1-1→ ℙ ) → ran FermatNo ∈ Fin )
7 df-nel ( ran FermatNo ∉ Fin ↔ ¬ ran FermatNo ∈ Fin )
8 pm2.21 ( ¬ ran FermatNo ∈ Fin → ( ran FermatNo ∈ Fin → ℙ ∉ Fin ) )
9 7 8 sylbi ( ran FermatNo ∉ Fin → ( ran FermatNo ∈ Fin → ℙ ∉ Fin ) )
10 5 6 9 mpsyl ( ( ℙ ∈ Fin ∧ ( 𝑓 ∈ ran FermatNo ↦ inf ( { 𝑝 ∈ ℙ ∣ 𝑝𝑓 } , ℝ , < ) ) : ran FermatNo –1-1→ ℙ ) → ℙ ∉ Fin )
11 10 ex ( ℙ ∈ Fin → ( ( 𝑓 ∈ ran FermatNo ↦ inf ( { 𝑝 ∈ ℙ ∣ 𝑝𝑓 } , ℝ , < ) ) : ran FermatNo –1-1→ ℙ → ℙ ∉ Fin ) )
12 4 11 sylbi ( ¬ ℙ ∉ Fin → ( ( 𝑓 ∈ ran FermatNo ↦ inf ( { 𝑝 ∈ ℙ ∣ 𝑝𝑓 } , ℝ , < ) ) : ran FermatNo –1-1→ ℙ → ℙ ∉ Fin ) )
13 3 12 pm2.61i ( ( 𝑓 ∈ ran FermatNo ↦ inf ( { 𝑝 ∈ ℙ ∣ 𝑝𝑓 } , ℝ , < ) ) : ran FermatNo –1-1→ ℙ → ℙ ∉ Fin )
14 2 13 ax-mp ℙ ∉ Fin