Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( 𝑓 ∈ ran FermatNo ↦ inf ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓 } , ℝ , < ) ) = ( 𝑓 ∈ ran FermatNo ↦ inf ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓 } , ℝ , < ) ) |
2 |
1
|
prmdvdsfmtnof1 |
⊢ ( 𝑓 ∈ ran FermatNo ↦ inf ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓 } , ℝ , < ) ) : ran FermatNo –1-1→ ℙ |
3 |
|
ax-1 |
⊢ ( ℙ ∉ Fin → ( ( 𝑓 ∈ ran FermatNo ↦ inf ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓 } , ℝ , < ) ) : ran FermatNo –1-1→ ℙ → ℙ ∉ Fin ) ) |
4 |
|
nnel |
⊢ ( ¬ ℙ ∉ Fin ↔ ℙ ∈ Fin ) |
5 |
|
fmtnoinf |
⊢ ran FermatNo ∉ Fin |
6 |
|
f1fi |
⊢ ( ( ℙ ∈ Fin ∧ ( 𝑓 ∈ ran FermatNo ↦ inf ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓 } , ℝ , < ) ) : ran FermatNo –1-1→ ℙ ) → ran FermatNo ∈ Fin ) |
7 |
|
df-nel |
⊢ ( ran FermatNo ∉ Fin ↔ ¬ ran FermatNo ∈ Fin ) |
8 |
|
pm2.21 |
⊢ ( ¬ ran FermatNo ∈ Fin → ( ran FermatNo ∈ Fin → ℙ ∉ Fin ) ) |
9 |
7 8
|
sylbi |
⊢ ( ran FermatNo ∉ Fin → ( ran FermatNo ∈ Fin → ℙ ∉ Fin ) ) |
10 |
5 6 9
|
mpsyl |
⊢ ( ( ℙ ∈ Fin ∧ ( 𝑓 ∈ ran FermatNo ↦ inf ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓 } , ℝ , < ) ) : ran FermatNo –1-1→ ℙ ) → ℙ ∉ Fin ) |
11 |
10
|
ex |
⊢ ( ℙ ∈ Fin → ( ( 𝑓 ∈ ran FermatNo ↦ inf ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓 } , ℝ , < ) ) : ran FermatNo –1-1→ ℙ → ℙ ∉ Fin ) ) |
12 |
4 11
|
sylbi |
⊢ ( ¬ ℙ ∉ Fin → ( ( 𝑓 ∈ ran FermatNo ↦ inf ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓 } , ℝ , < ) ) : ran FermatNo –1-1→ ℙ → ℙ ∉ Fin ) ) |
13 |
3 12
|
pm2.61i |
⊢ ( ( 𝑓 ∈ ran FermatNo ↦ inf ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓 } , ℝ , < ) ) : ran FermatNo –1-1→ ℙ → ℙ ∉ Fin ) |
14 |
2 13
|
ax-mp |
⊢ ℙ ∉ Fin |