Metamath Proof Explorer


Theorem prminf2

Description: The set of prime numbers is infinite. The proof of this variant of prminf is based on Goldbach's theorem goldbachth (via prmdvdsfmtnof1 and prmdvdsfmtnof1lem2 ), see Wikipedia "Fermat number", 4-Aug-2021, https://en.wikipedia.org/wiki/Fermat_number#Basic_properties . (Contributed by AV, 4-Aug-2021)

Ref Expression
Assertion prminf2 Fin

Proof

Step Hyp Ref Expression
1 eqid franFermatNosupp|pf<=franFermatNosupp|pf<
2 1 prmdvdsfmtnof1 franFermatNosupp|pf<:ranFermatNo1-1
3 ax-1 FinfranFermatNosupp|pf<:ranFermatNo1-1Fin
4 nnel ¬FinFin
5 fmtnoinf ranFermatNoFin
6 f1fi FinfranFermatNosupp|pf<:ranFermatNo1-1ranFermatNoFin
7 df-nel ranFermatNoFin¬ranFermatNoFin
8 pm2.21 ¬ranFermatNoFinranFermatNoFinFin
9 7 8 sylbi ranFermatNoFinranFermatNoFinFin
10 5 6 9 mpsyl FinfranFermatNosupp|pf<:ranFermatNo1-1Fin
11 10 ex FinfranFermatNosupp|pf<:ranFermatNo1-1Fin
12 4 11 sylbi ¬FinfranFermatNosupp|pf<:ranFermatNo1-1Fin
13 3 12 pm2.61i franFermatNosupp|pf<:ranFermatNo1-1Fin
14 2 13 ax-mp Fin