| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fmtnof1 |
⊢ FermatNo : ℕ0 –1-1→ ℕ |
| 2 |
|
f1f |
⊢ ( FermatNo : ℕ0 –1-1→ ℕ → FermatNo : ℕ0 ⟶ ℕ ) |
| 3 |
|
fdm |
⊢ ( FermatNo : ℕ0 ⟶ ℕ → dom FermatNo = ℕ0 ) |
| 4 |
|
nnssnn0 |
⊢ ℕ ⊆ ℕ0 |
| 5 |
|
nnnfi |
⊢ ¬ ℕ ∈ Fin |
| 6 |
|
ssfi |
⊢ ( ( ℕ0 ∈ Fin ∧ ℕ ⊆ ℕ0 ) → ℕ ∈ Fin ) |
| 7 |
6
|
expcom |
⊢ ( ℕ ⊆ ℕ0 → ( ℕ0 ∈ Fin → ℕ ∈ Fin ) ) |
| 8 |
7
|
con3d |
⊢ ( ℕ ⊆ ℕ0 → ( ¬ ℕ ∈ Fin → ¬ ℕ0 ∈ Fin ) ) |
| 9 |
4 5 8
|
mp2 |
⊢ ¬ ℕ0 ∈ Fin |
| 10 |
|
eleq1 |
⊢ ( dom FermatNo = ℕ0 → ( dom FermatNo ∈ Fin ↔ ℕ0 ∈ Fin ) ) |
| 11 |
9 10
|
mtbiri |
⊢ ( dom FermatNo = ℕ0 → ¬ dom FermatNo ∈ Fin ) |
| 12 |
3 11
|
syl |
⊢ ( FermatNo : ℕ0 ⟶ ℕ → ¬ dom FermatNo ∈ Fin ) |
| 13 |
|
ffun |
⊢ ( FermatNo : ℕ0 ⟶ ℕ → Fun FermatNo ) |
| 14 |
|
fundmfibi |
⊢ ( Fun FermatNo → ( FermatNo ∈ Fin ↔ dom FermatNo ∈ Fin ) ) |
| 15 |
13 14
|
syl |
⊢ ( FermatNo : ℕ0 ⟶ ℕ → ( FermatNo ∈ Fin ↔ dom FermatNo ∈ Fin ) ) |
| 16 |
12 15
|
mtbird |
⊢ ( FermatNo : ℕ0 ⟶ ℕ → ¬ FermatNo ∈ Fin ) |
| 17 |
1 2 16
|
mp2b |
⊢ ¬ FermatNo ∈ Fin |
| 18 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 19 |
|
f1dmvrnfibi |
⊢ ( ( ℕ0 ∈ V ∧ FermatNo : ℕ0 –1-1→ ℕ ) → ( FermatNo ∈ Fin ↔ ran FermatNo ∈ Fin ) ) |
| 20 |
19
|
notbid |
⊢ ( ( ℕ0 ∈ V ∧ FermatNo : ℕ0 –1-1→ ℕ ) → ( ¬ FermatNo ∈ Fin ↔ ¬ ran FermatNo ∈ Fin ) ) |
| 21 |
18 1 20
|
mp2an |
⊢ ( ¬ FermatNo ∈ Fin ↔ ¬ ran FermatNo ∈ Fin ) |
| 22 |
17 21
|
mpbi |
⊢ ¬ ran FermatNo ∈ Fin |
| 23 |
22
|
nelir |
⊢ ran FermatNo ∉ Fin |