| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fmtnof1 | ⊢ FermatNo : ℕ0 –1-1→ ℕ | 
						
							| 2 |  | f1f | ⊢ ( FermatNo : ℕ0 –1-1→ ℕ  →  FermatNo : ℕ0 ⟶ ℕ ) | 
						
							| 3 |  | fdm | ⊢ ( FermatNo : ℕ0 ⟶ ℕ  →  dom  FermatNo  =  ℕ0 ) | 
						
							| 4 |  | nnssnn0 | ⊢ ℕ  ⊆  ℕ0 | 
						
							| 5 |  | nnnfi | ⊢ ¬  ℕ  ∈  Fin | 
						
							| 6 |  | ssfi | ⊢ ( ( ℕ0  ∈  Fin  ∧  ℕ  ⊆  ℕ0 )  →  ℕ  ∈  Fin ) | 
						
							| 7 | 6 | expcom | ⊢ ( ℕ  ⊆  ℕ0  →  ( ℕ0  ∈  Fin  →  ℕ  ∈  Fin ) ) | 
						
							| 8 | 7 | con3d | ⊢ ( ℕ  ⊆  ℕ0  →  ( ¬  ℕ  ∈  Fin  →  ¬  ℕ0  ∈  Fin ) ) | 
						
							| 9 | 4 5 8 | mp2 | ⊢ ¬  ℕ0  ∈  Fin | 
						
							| 10 |  | eleq1 | ⊢ ( dom  FermatNo  =  ℕ0  →  ( dom  FermatNo  ∈  Fin  ↔  ℕ0  ∈  Fin ) ) | 
						
							| 11 | 9 10 | mtbiri | ⊢ ( dom  FermatNo  =  ℕ0  →  ¬  dom  FermatNo  ∈  Fin ) | 
						
							| 12 | 3 11 | syl | ⊢ ( FermatNo : ℕ0 ⟶ ℕ  →  ¬  dom  FermatNo  ∈  Fin ) | 
						
							| 13 |  | ffun | ⊢ ( FermatNo : ℕ0 ⟶ ℕ  →  Fun  FermatNo ) | 
						
							| 14 |  | fundmfibi | ⊢ ( Fun  FermatNo  →  ( FermatNo  ∈  Fin  ↔  dom  FermatNo  ∈  Fin ) ) | 
						
							| 15 | 13 14 | syl | ⊢ ( FermatNo : ℕ0 ⟶ ℕ  →  ( FermatNo  ∈  Fin  ↔  dom  FermatNo  ∈  Fin ) ) | 
						
							| 16 | 12 15 | mtbird | ⊢ ( FermatNo : ℕ0 ⟶ ℕ  →  ¬  FermatNo  ∈  Fin ) | 
						
							| 17 | 1 2 16 | mp2b | ⊢ ¬  FermatNo  ∈  Fin | 
						
							| 18 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 19 |  | f1dmvrnfibi | ⊢ ( ( ℕ0  ∈  V  ∧  FermatNo : ℕ0 –1-1→ ℕ )  →  ( FermatNo  ∈  Fin  ↔  ran  FermatNo  ∈  Fin ) ) | 
						
							| 20 | 19 | notbid | ⊢ ( ( ℕ0  ∈  V  ∧  FermatNo : ℕ0 –1-1→ ℕ )  →  ( ¬  FermatNo  ∈  Fin  ↔  ¬  ran  FermatNo  ∈  Fin ) ) | 
						
							| 21 | 18 1 20 | mp2an | ⊢ ( ¬  FermatNo  ∈  Fin  ↔  ¬  ran  FermatNo  ∈  Fin ) | 
						
							| 22 | 17 21 | mpbi | ⊢ ¬  ran  FermatNo  ∈  Fin | 
						
							| 23 | 22 | nelir | ⊢ ran  FermatNo  ∉  Fin |