Description: There are an infinite number of primes. Theorem 1.7 in ApostolNT p. 16. (Contributed by Paul Chapman, 28-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prminf | ⊢ ℙ ≈ ℕ | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | prmssnn | ⊢ ℙ ⊆ ℕ | |
| 2 | prmunb | ⊢ ( 𝑛 ∈ ℕ → ∃ 𝑝 ∈ ℙ 𝑛 < 𝑝 ) | |
| 3 | 2 | rgen | ⊢ ∀ 𝑛 ∈ ℕ ∃ 𝑝 ∈ ℙ 𝑛 < 𝑝 | 
| 4 | unben | ⊢ ( ( ℙ ⊆ ℕ ∧ ∀ 𝑛 ∈ ℕ ∃ 𝑝 ∈ ℙ 𝑛 < 𝑝 ) → ℙ ≈ ℕ ) | |
| 5 | 1 3 4 | mp2an | ⊢ ℙ ≈ ℕ |