Description: An unbounded set of positive integers is infinite. (Contributed by NM, 5-May-2005) (Revised by Mario Carneiro, 15-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unben | ⊢ ( ( 𝐴 ⊆ ℕ ∧ ∀ 𝑚 ∈ ℕ ∃ 𝑛 ∈ 𝐴 𝑚 < 𝑛 ) → 𝐴 ≈ ℕ ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid | ⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) | |
| 2 | 1 | unbenlem | ⊢ ( ( 𝐴 ⊆ ℕ ∧ ∀ 𝑚 ∈ ℕ ∃ 𝑛 ∈ 𝐴 𝑚 < 𝑛 ) → 𝐴 ≈ ω ) | 
| 3 | nnenom | ⊢ ℕ ≈ ω | |
| 4 | 3 | ensymi | ⊢ ω ≈ ℕ | 
| 5 | entr | ⊢ ( ( 𝐴 ≈ ω ∧ ω ≈ ℕ ) → 𝐴 ≈ ℕ ) | |
| 6 | 2 4 5 | sylancl | ⊢ ( ( 𝐴 ⊆ ℕ ∧ ∀ 𝑚 ∈ ℕ ∃ 𝑛 ∈ 𝐴 𝑚 < 𝑛 ) → 𝐴 ≈ ℕ ) |