Metamath Proof Explorer


Theorem prmdvdsfmtnof1lem1

Description: Lemma 1 for prmdvdsfmtnof1 . (Contributed by AV, 3-Aug-2021)

Ref Expression
Hypotheses prmdvdsfmtnof1lem1.i I=supp|pF<
prmdvdsfmtnof1lem1.j J=supp|pG<
Assertion prmdvdsfmtnof1lem1 F2G2I=JIIFIG

Proof

Step Hyp Ref Expression
1 prmdvdsfmtnof1lem1.i I=supp|pF<
2 prmdvdsfmtnof1lem1.j J=supp|pG<
3 ltso <Or
4 3 a1i F2G2<Or
5 eluz2nn F2F
6 5 adantr F2G2F
7 prmdvdsfi Fp|pFFin
8 6 7 syl F2G2p|pFFin
9 exprmfct F2ppF
10 9 adantr F2G2ppF
11 rabn0 p|pFppF
12 10 11 sylibr F2G2p|pF
13 ssrab2 p|pF
14 prmssnn
15 nnssre
16 14 15 sstri
17 13 16 sstri p|pF
18 17 a1i F2G2p|pF
19 fiinfcl <Orp|pFFinp|pFp|pFsupp|pF<p|pF
20 4 8 12 18 19 syl13anc F2G2supp|pF<p|pF
21 1 eleq1i Ip|pFsupp|pF<p|pF
22 eluz2nn G2G
23 22 adantl F2G2G
24 prmdvdsfi Gp|pGFin
25 23 24 syl F2G2p|pGFin
26 exprmfct G2ppG
27 26 adantl F2G2ppG
28 rabn0 p|pGppG
29 27 28 sylibr F2G2p|pG
30 ssrab2 p|pG
31 30 16 sstri p|pG
32 31 a1i F2G2p|pG
33 fiinfcl <Orp|pGFinp|pGp|pGsupp|pG<p|pG
34 4 25 29 32 33 syl13anc F2G2supp|pG<p|pG
35 2 eleq1i Jp|pGsupp|pG<p|pG
36 nfrab1 _pp|pG
37 nfcv _p
38 nfcv _p<
39 36 37 38 nfinf _psupp|pG<
40 2 39 nfcxfr _pJ
41 nfcv _p
42 nfcv _p
43 nfcv _pG
44 40 42 43 nfbr pJG
45 breq1 p=JpGJG
46 40 41 44 45 elrabf Jp|pGJJG
47 nfrab1 _pp|pF
48 47 37 38 nfinf _psupp|pF<
49 1 48 nfcxfr _pI
50 nfcv _pF
51 49 42 50 nfbr pIF
52 breq1 p=IpFIF
53 49 41 51 52 elrabf Ip|pFIIF
54 simp2l JJGIIFI=JI
55 simp2r JJGIIFI=JIF
56 simp1r JJGIIFI=JJG
57 breq1 I=JIGJG
58 57 3ad2ant3 JJGIIFI=JIGJG
59 56 58 mpbird JJGIIFI=JIG
60 54 55 59 3jca JJGIIFI=JIIFIG
61 60 3exp JJGIIFI=JIIFIG
62 53 61 biimtrid JJGIp|pFI=JIIFIG
63 46 62 sylbi Jp|pGIp|pFI=JIIFIG
64 63 a1i F2G2Jp|pGIp|pFI=JIIFIG
65 35 64 biimtrrid F2G2supp|pG<p|pGIp|pFI=JIIFIG
66 34 65 mpd F2G2Ip|pFI=JIIFIG
67 21 66 biimtrrid F2G2supp|pF<p|pFI=JIIFIG
68 20 67 mpd F2G2I=JIIFIG