| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prmdvdsfmtnof1lem1.i |
|
| 2 |
|
prmdvdsfmtnof1lem1.j |
|
| 3 |
|
ltso |
|
| 4 |
3
|
a1i |
|
| 5 |
|
eluz2nn |
|
| 6 |
5
|
adantr |
|
| 7 |
|
prmdvdsfi |
|
| 8 |
6 7
|
syl |
|
| 9 |
|
exprmfct |
|
| 10 |
9
|
adantr |
|
| 11 |
|
rabn0 |
|
| 12 |
10 11
|
sylibr |
|
| 13 |
|
ssrab2 |
|
| 14 |
|
prmssnn |
|
| 15 |
|
nnssre |
|
| 16 |
14 15
|
sstri |
|
| 17 |
13 16
|
sstri |
|
| 18 |
17
|
a1i |
|
| 19 |
|
fiinfcl |
|
| 20 |
4 8 12 18 19
|
syl13anc |
|
| 21 |
1
|
eleq1i |
|
| 22 |
|
eluz2nn |
|
| 23 |
22
|
adantl |
|
| 24 |
|
prmdvdsfi |
|
| 25 |
23 24
|
syl |
|
| 26 |
|
exprmfct |
|
| 27 |
26
|
adantl |
|
| 28 |
|
rabn0 |
|
| 29 |
27 28
|
sylibr |
|
| 30 |
|
ssrab2 |
|
| 31 |
30 16
|
sstri |
|
| 32 |
31
|
a1i |
|
| 33 |
|
fiinfcl |
|
| 34 |
4 25 29 32 33
|
syl13anc |
|
| 35 |
2
|
eleq1i |
|
| 36 |
|
nfrab1 |
|
| 37 |
|
nfcv |
|
| 38 |
|
nfcv |
|
| 39 |
36 37 38
|
nfinf |
|
| 40 |
2 39
|
nfcxfr |
|
| 41 |
|
nfcv |
|
| 42 |
|
nfcv |
|
| 43 |
|
nfcv |
|
| 44 |
40 42 43
|
nfbr |
|
| 45 |
|
breq1 |
|
| 46 |
40 41 44 45
|
elrabf |
|
| 47 |
|
nfrab1 |
|
| 48 |
47 37 38
|
nfinf |
|
| 49 |
1 48
|
nfcxfr |
|
| 50 |
|
nfcv |
|
| 51 |
49 42 50
|
nfbr |
|
| 52 |
|
breq1 |
|
| 53 |
49 41 51 52
|
elrabf |
|
| 54 |
|
simp2l |
|
| 55 |
|
simp2r |
|
| 56 |
|
simp1r |
|
| 57 |
|
breq1 |
|
| 58 |
57
|
3ad2ant3 |
|
| 59 |
56 58
|
mpbird |
|
| 60 |
54 55 59
|
3jca |
|
| 61 |
60
|
3exp |
|
| 62 |
53 61
|
biimtrid |
|
| 63 |
46 62
|
sylbi |
|
| 64 |
63
|
a1i |
|
| 65 |
35 64
|
biimtrrid |
|
| 66 |
34 65
|
mpd |
|
| 67 |
21 66
|
biimtrrid |
|
| 68 |
20 67
|
mpd |
|