Description: Lemma 1 for prmdvdsfmtnof1 . (Contributed by AV, 3-Aug-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | prmdvdsfmtnof1lem1.i | |
|
prmdvdsfmtnof1lem1.j | |
||
Assertion | prmdvdsfmtnof1lem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmdvdsfmtnof1lem1.i | |
|
2 | prmdvdsfmtnof1lem1.j | |
|
3 | ltso | |
|
4 | 3 | a1i | |
5 | eluz2nn | |
|
6 | 5 | adantr | |
7 | prmdvdsfi | |
|
8 | 6 7 | syl | |
9 | exprmfct | |
|
10 | 9 | adantr | |
11 | rabn0 | |
|
12 | 10 11 | sylibr | |
13 | ssrab2 | |
|
14 | prmssnn | |
|
15 | nnssre | |
|
16 | 14 15 | sstri | |
17 | 13 16 | sstri | |
18 | 17 | a1i | |
19 | fiinfcl | |
|
20 | 4 8 12 18 19 | syl13anc | |
21 | 1 | eleq1i | |
22 | eluz2nn | |
|
23 | 22 | adantl | |
24 | prmdvdsfi | |
|
25 | 23 24 | syl | |
26 | exprmfct | |
|
27 | 26 | adantl | |
28 | rabn0 | |
|
29 | 27 28 | sylibr | |
30 | ssrab2 | |
|
31 | 30 16 | sstri | |
32 | 31 | a1i | |
33 | fiinfcl | |
|
34 | 4 25 29 32 33 | syl13anc | |
35 | 2 | eleq1i | |
36 | nfrab1 | |
|
37 | nfcv | |
|
38 | nfcv | |
|
39 | 36 37 38 | nfinf | |
40 | 2 39 | nfcxfr | |
41 | nfcv | |
|
42 | nfcv | |
|
43 | nfcv | |
|
44 | 40 42 43 | nfbr | |
45 | breq1 | |
|
46 | 40 41 44 45 | elrabf | |
47 | nfrab1 | |
|
48 | 47 37 38 | nfinf | |
49 | 1 48 | nfcxfr | |
50 | nfcv | |
|
51 | 49 42 50 | nfbr | |
52 | breq1 | |
|
53 | 49 41 51 52 | elrabf | |
54 | simp2l | |
|
55 | simp2r | |
|
56 | simp1r | |
|
57 | breq1 | |
|
58 | 57 | 3ad2ant3 | |
59 | 56 58 | mpbird | |
60 | 54 55 59 | 3jca | |
61 | 60 | 3exp | |
62 | 53 61 | biimtrid | |
63 | 46 62 | sylbi | |
64 | 63 | a1i | |
65 | 35 64 | biimtrrid | |
66 | 34 65 | mpd | |
67 | 21 66 | biimtrrid | |
68 | 20 67 | mpd | |