Metamath Proof Explorer


Theorem prmdvdsfmtnof1lem1

Description: Lemma 1 for prmdvdsfmtnof1 . (Contributed by AV, 3-Aug-2021)

Ref Expression
Hypotheses prmdvdsfmtnof1lem1.i I = sup p | p F <
prmdvdsfmtnof1lem1.j J = sup p | p G <
Assertion prmdvdsfmtnof1lem1 F 2 G 2 I = J I I F I G

Proof

Step Hyp Ref Expression
1 prmdvdsfmtnof1lem1.i I = sup p | p F <
2 prmdvdsfmtnof1lem1.j J = sup p | p G <
3 ltso < Or
4 3 a1i F 2 G 2 < Or
5 eluz2nn F 2 F
6 5 adantr F 2 G 2 F
7 prmdvdsfi F p | p F Fin
8 6 7 syl F 2 G 2 p | p F Fin
9 exprmfct F 2 p p F
10 9 adantr F 2 G 2 p p F
11 rabn0 p | p F p p F
12 10 11 sylibr F 2 G 2 p | p F
13 ssrab2 p | p F
14 prmssnn
15 nnssre
16 14 15 sstri
17 13 16 sstri p | p F
18 17 a1i F 2 G 2 p | p F
19 fiinfcl < Or p | p F Fin p | p F p | p F sup p | p F < p | p F
20 4 8 12 18 19 syl13anc F 2 G 2 sup p | p F < p | p F
21 1 eleq1i I p | p F sup p | p F < p | p F
22 eluz2nn G 2 G
23 22 adantl F 2 G 2 G
24 prmdvdsfi G p | p G Fin
25 23 24 syl F 2 G 2 p | p G Fin
26 exprmfct G 2 p p G
27 26 adantl F 2 G 2 p p G
28 rabn0 p | p G p p G
29 27 28 sylibr F 2 G 2 p | p G
30 ssrab2 p | p G
31 30 16 sstri p | p G
32 31 a1i F 2 G 2 p | p G
33 fiinfcl < Or p | p G Fin p | p G p | p G sup p | p G < p | p G
34 4 25 29 32 33 syl13anc F 2 G 2 sup p | p G < p | p G
35 2 eleq1i J p | p G sup p | p G < p | p G
36 nfrab1 _ p p | p G
37 nfcv _ p
38 nfcv _ p <
39 36 37 38 nfinf _ p sup p | p G <
40 2 39 nfcxfr _ p J
41 nfcv _ p
42 nfcv _ p
43 nfcv _ p G
44 40 42 43 nfbr p J G
45 breq1 p = J p G J G
46 40 41 44 45 elrabf J p | p G J J G
47 nfrab1 _ p p | p F
48 47 37 38 nfinf _ p sup p | p F <
49 1 48 nfcxfr _ p I
50 nfcv _ p F
51 49 42 50 nfbr p I F
52 breq1 p = I p F I F
53 49 41 51 52 elrabf I p | p F I I F
54 simp2l J J G I I F I = J I
55 simp2r J J G I I F I = J I F
56 simp1r J J G I I F I = J J G
57 breq1 I = J I G J G
58 57 3ad2ant3 J J G I I F I = J I G J G
59 56 58 mpbird J J G I I F I = J I G
60 54 55 59 3jca J J G I I F I = J I I F I G
61 60 3exp J J G I I F I = J I I F I G
62 53 61 syl5bi J J G I p | p F I = J I I F I G
63 46 62 sylbi J p | p G I p | p F I = J I I F I G
64 63 a1i F 2 G 2 J p | p G I p | p F I = J I I F I G
65 35 64 syl5bir F 2 G 2 sup p | p G < p | p G I p | p F I = J I I F I G
66 34 65 mpd F 2 G 2 I p | p F I = J I I F I G
67 21 66 syl5bir F 2 G 2 sup p | p F < p | p F I = J I I F I G
68 20 67 mpd F 2 G 2 I = J I I F I G