Step |
Hyp |
Ref |
Expression |
1 |
|
prmdvdsfmtnof1lem1.i |
⊢ 𝐼 = inf ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹 } , ℝ , < ) |
2 |
|
prmdvdsfmtnof1lem1.j |
⊢ 𝐽 = inf ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐺 } , ℝ , < ) |
3 |
|
ltso |
⊢ < Or ℝ |
4 |
3
|
a1i |
⊢ ( ( 𝐹 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐺 ∈ ( ℤ≥ ‘ 2 ) ) → < Or ℝ ) |
5 |
|
eluz2nn |
⊢ ( 𝐹 ∈ ( ℤ≥ ‘ 2 ) → 𝐹 ∈ ℕ ) |
6 |
5
|
adantr |
⊢ ( ( 𝐹 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐺 ∈ ( ℤ≥ ‘ 2 ) ) → 𝐹 ∈ ℕ ) |
7 |
|
prmdvdsfi |
⊢ ( 𝐹 ∈ ℕ → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹 } ∈ Fin ) |
8 |
6 7
|
syl |
⊢ ( ( 𝐹 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐺 ∈ ( ℤ≥ ‘ 2 ) ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹 } ∈ Fin ) |
9 |
|
exprmfct |
⊢ ( 𝐹 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝐹 ) |
10 |
9
|
adantr |
⊢ ( ( 𝐹 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐺 ∈ ( ℤ≥ ‘ 2 ) ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝐹 ) |
11 |
|
rabn0 |
⊢ ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹 } ≠ ∅ ↔ ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝐹 ) |
12 |
10 11
|
sylibr |
⊢ ( ( 𝐹 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐺 ∈ ( ℤ≥ ‘ 2 ) ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹 } ≠ ∅ ) |
13 |
|
ssrab2 |
⊢ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹 } ⊆ ℙ |
14 |
|
prmssnn |
⊢ ℙ ⊆ ℕ |
15 |
|
nnssre |
⊢ ℕ ⊆ ℝ |
16 |
14 15
|
sstri |
⊢ ℙ ⊆ ℝ |
17 |
13 16
|
sstri |
⊢ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹 } ⊆ ℝ |
18 |
17
|
a1i |
⊢ ( ( 𝐹 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐺 ∈ ( ℤ≥ ‘ 2 ) ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹 } ⊆ ℝ ) |
19 |
|
fiinfcl |
⊢ ( ( < Or ℝ ∧ ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹 } ∈ Fin ∧ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹 } ≠ ∅ ∧ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹 } ⊆ ℝ ) ) → inf ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹 } , ℝ , < ) ∈ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹 } ) |
20 |
4 8 12 18 19
|
syl13anc |
⊢ ( ( 𝐹 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐺 ∈ ( ℤ≥ ‘ 2 ) ) → inf ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹 } , ℝ , < ) ∈ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹 } ) |
21 |
1
|
eleq1i |
⊢ ( 𝐼 ∈ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹 } ↔ inf ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹 } , ℝ , < ) ∈ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹 } ) |
22 |
|
eluz2nn |
⊢ ( 𝐺 ∈ ( ℤ≥ ‘ 2 ) → 𝐺 ∈ ℕ ) |
23 |
22
|
adantl |
⊢ ( ( 𝐹 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐺 ∈ ( ℤ≥ ‘ 2 ) ) → 𝐺 ∈ ℕ ) |
24 |
|
prmdvdsfi |
⊢ ( 𝐺 ∈ ℕ → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐺 } ∈ Fin ) |
25 |
23 24
|
syl |
⊢ ( ( 𝐹 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐺 ∈ ( ℤ≥ ‘ 2 ) ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐺 } ∈ Fin ) |
26 |
|
exprmfct |
⊢ ( 𝐺 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝐺 ) |
27 |
26
|
adantl |
⊢ ( ( 𝐹 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐺 ∈ ( ℤ≥ ‘ 2 ) ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝐺 ) |
28 |
|
rabn0 |
⊢ ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐺 } ≠ ∅ ↔ ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝐺 ) |
29 |
27 28
|
sylibr |
⊢ ( ( 𝐹 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐺 ∈ ( ℤ≥ ‘ 2 ) ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐺 } ≠ ∅ ) |
30 |
|
ssrab2 |
⊢ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐺 } ⊆ ℙ |
31 |
30 16
|
sstri |
⊢ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐺 } ⊆ ℝ |
32 |
31
|
a1i |
⊢ ( ( 𝐹 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐺 ∈ ( ℤ≥ ‘ 2 ) ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐺 } ⊆ ℝ ) |
33 |
|
fiinfcl |
⊢ ( ( < Or ℝ ∧ ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐺 } ∈ Fin ∧ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐺 } ≠ ∅ ∧ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐺 } ⊆ ℝ ) ) → inf ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐺 } , ℝ , < ) ∈ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐺 } ) |
34 |
4 25 29 32 33
|
syl13anc |
⊢ ( ( 𝐹 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐺 ∈ ( ℤ≥ ‘ 2 ) ) → inf ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐺 } , ℝ , < ) ∈ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐺 } ) |
35 |
2
|
eleq1i |
⊢ ( 𝐽 ∈ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐺 } ↔ inf ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐺 } , ℝ , < ) ∈ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐺 } ) |
36 |
|
nfrab1 |
⊢ Ⅎ 𝑝 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐺 } |
37 |
|
nfcv |
⊢ Ⅎ 𝑝 ℝ |
38 |
|
nfcv |
⊢ Ⅎ 𝑝 < |
39 |
36 37 38
|
nfinf |
⊢ Ⅎ 𝑝 inf ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐺 } , ℝ , < ) |
40 |
2 39
|
nfcxfr |
⊢ Ⅎ 𝑝 𝐽 |
41 |
|
nfcv |
⊢ Ⅎ 𝑝 ℙ |
42 |
|
nfcv |
⊢ Ⅎ 𝑝 ∥ |
43 |
|
nfcv |
⊢ Ⅎ 𝑝 𝐺 |
44 |
40 42 43
|
nfbr |
⊢ Ⅎ 𝑝 𝐽 ∥ 𝐺 |
45 |
|
breq1 |
⊢ ( 𝑝 = 𝐽 → ( 𝑝 ∥ 𝐺 ↔ 𝐽 ∥ 𝐺 ) ) |
46 |
40 41 44 45
|
elrabf |
⊢ ( 𝐽 ∈ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐺 } ↔ ( 𝐽 ∈ ℙ ∧ 𝐽 ∥ 𝐺 ) ) |
47 |
|
nfrab1 |
⊢ Ⅎ 𝑝 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹 } |
48 |
47 37 38
|
nfinf |
⊢ Ⅎ 𝑝 inf ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹 } , ℝ , < ) |
49 |
1 48
|
nfcxfr |
⊢ Ⅎ 𝑝 𝐼 |
50 |
|
nfcv |
⊢ Ⅎ 𝑝 𝐹 |
51 |
49 42 50
|
nfbr |
⊢ Ⅎ 𝑝 𝐼 ∥ 𝐹 |
52 |
|
breq1 |
⊢ ( 𝑝 = 𝐼 → ( 𝑝 ∥ 𝐹 ↔ 𝐼 ∥ 𝐹 ) ) |
53 |
49 41 51 52
|
elrabf |
⊢ ( 𝐼 ∈ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹 } ↔ ( 𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ) ) |
54 |
|
simp2l |
⊢ ( ( ( 𝐽 ∈ ℙ ∧ 𝐽 ∥ 𝐺 ) ∧ ( 𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ) ∧ 𝐼 = 𝐽 ) → 𝐼 ∈ ℙ ) |
55 |
|
simp2r |
⊢ ( ( ( 𝐽 ∈ ℙ ∧ 𝐽 ∥ 𝐺 ) ∧ ( 𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ) ∧ 𝐼 = 𝐽 ) → 𝐼 ∥ 𝐹 ) |
56 |
|
simp1r |
⊢ ( ( ( 𝐽 ∈ ℙ ∧ 𝐽 ∥ 𝐺 ) ∧ ( 𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ) ∧ 𝐼 = 𝐽 ) → 𝐽 ∥ 𝐺 ) |
57 |
|
breq1 |
⊢ ( 𝐼 = 𝐽 → ( 𝐼 ∥ 𝐺 ↔ 𝐽 ∥ 𝐺 ) ) |
58 |
57
|
3ad2ant3 |
⊢ ( ( ( 𝐽 ∈ ℙ ∧ 𝐽 ∥ 𝐺 ) ∧ ( 𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ) ∧ 𝐼 = 𝐽 ) → ( 𝐼 ∥ 𝐺 ↔ 𝐽 ∥ 𝐺 ) ) |
59 |
56 58
|
mpbird |
⊢ ( ( ( 𝐽 ∈ ℙ ∧ 𝐽 ∥ 𝐺 ) ∧ ( 𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ) ∧ 𝐼 = 𝐽 ) → 𝐼 ∥ 𝐺 ) |
60 |
54 55 59
|
3jca |
⊢ ( ( ( 𝐽 ∈ ℙ ∧ 𝐽 ∥ 𝐺 ) ∧ ( 𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ) ∧ 𝐼 = 𝐽 ) → ( 𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺 ) ) |
61 |
60
|
3exp |
⊢ ( ( 𝐽 ∈ ℙ ∧ 𝐽 ∥ 𝐺 ) → ( ( 𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ) → ( 𝐼 = 𝐽 → ( 𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺 ) ) ) ) |
62 |
53 61
|
syl5bi |
⊢ ( ( 𝐽 ∈ ℙ ∧ 𝐽 ∥ 𝐺 ) → ( 𝐼 ∈ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹 } → ( 𝐼 = 𝐽 → ( 𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺 ) ) ) ) |
63 |
46 62
|
sylbi |
⊢ ( 𝐽 ∈ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐺 } → ( 𝐼 ∈ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹 } → ( 𝐼 = 𝐽 → ( 𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺 ) ) ) ) |
64 |
63
|
a1i |
⊢ ( ( 𝐹 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐺 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝐽 ∈ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐺 } → ( 𝐼 ∈ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹 } → ( 𝐼 = 𝐽 → ( 𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺 ) ) ) ) ) |
65 |
35 64
|
syl5bir |
⊢ ( ( 𝐹 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐺 ∈ ( ℤ≥ ‘ 2 ) ) → ( inf ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐺 } , ℝ , < ) ∈ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐺 } → ( 𝐼 ∈ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹 } → ( 𝐼 = 𝐽 → ( 𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺 ) ) ) ) ) |
66 |
34 65
|
mpd |
⊢ ( ( 𝐹 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐺 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝐼 ∈ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹 } → ( 𝐼 = 𝐽 → ( 𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺 ) ) ) ) |
67 |
21 66
|
syl5bir |
⊢ ( ( 𝐹 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐺 ∈ ( ℤ≥ ‘ 2 ) ) → ( inf ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹 } , ℝ , < ) ∈ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐹 } → ( 𝐼 = 𝐽 → ( 𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺 ) ) ) ) |
68 |
20 67
|
mpd |
⊢ ( ( 𝐹 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐺 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝐼 = 𝐽 → ( 𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺 ) ) ) |