Metamath Proof Explorer


Theorem prmdvdsfmtnof1lem1

Description: Lemma 1 for prmdvdsfmtnof1 . (Contributed by AV, 3-Aug-2021)

Ref Expression
Hypotheses prmdvdsfmtnof1lem1.i 𝐼 = inf ( { 𝑝 ∈ ℙ ∣ 𝑝𝐹 } , ℝ , < )
prmdvdsfmtnof1lem1.j 𝐽 = inf ( { 𝑝 ∈ ℙ ∣ 𝑝𝐺 } , ℝ , < )
Assertion prmdvdsfmtnof1lem1 ( ( 𝐹 ∈ ( ℤ ‘ 2 ) ∧ 𝐺 ∈ ( ℤ ‘ 2 ) ) → ( 𝐼 = 𝐽 → ( 𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺 ) ) )

Proof

Step Hyp Ref Expression
1 prmdvdsfmtnof1lem1.i 𝐼 = inf ( { 𝑝 ∈ ℙ ∣ 𝑝𝐹 } , ℝ , < )
2 prmdvdsfmtnof1lem1.j 𝐽 = inf ( { 𝑝 ∈ ℙ ∣ 𝑝𝐺 } , ℝ , < )
3 ltso < Or ℝ
4 3 a1i ( ( 𝐹 ∈ ( ℤ ‘ 2 ) ∧ 𝐺 ∈ ( ℤ ‘ 2 ) ) → < Or ℝ )
5 eluz2nn ( 𝐹 ∈ ( ℤ ‘ 2 ) → 𝐹 ∈ ℕ )
6 5 adantr ( ( 𝐹 ∈ ( ℤ ‘ 2 ) ∧ 𝐺 ∈ ( ℤ ‘ 2 ) ) → 𝐹 ∈ ℕ )
7 prmdvdsfi ( 𝐹 ∈ ℕ → { 𝑝 ∈ ℙ ∣ 𝑝𝐹 } ∈ Fin )
8 6 7 syl ( ( 𝐹 ∈ ( ℤ ‘ 2 ) ∧ 𝐺 ∈ ( ℤ ‘ 2 ) ) → { 𝑝 ∈ ℙ ∣ 𝑝𝐹 } ∈ Fin )
9 exprmfct ( 𝐹 ∈ ( ℤ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝𝐹 )
10 9 adantr ( ( 𝐹 ∈ ( ℤ ‘ 2 ) ∧ 𝐺 ∈ ( ℤ ‘ 2 ) ) → ∃ 𝑝 ∈ ℙ 𝑝𝐹 )
11 rabn0 ( { 𝑝 ∈ ℙ ∣ 𝑝𝐹 } ≠ ∅ ↔ ∃ 𝑝 ∈ ℙ 𝑝𝐹 )
12 10 11 sylibr ( ( 𝐹 ∈ ( ℤ ‘ 2 ) ∧ 𝐺 ∈ ( ℤ ‘ 2 ) ) → { 𝑝 ∈ ℙ ∣ 𝑝𝐹 } ≠ ∅ )
13 ssrab2 { 𝑝 ∈ ℙ ∣ 𝑝𝐹 } ⊆ ℙ
14 prmssnn ℙ ⊆ ℕ
15 nnssre ℕ ⊆ ℝ
16 14 15 sstri ℙ ⊆ ℝ
17 13 16 sstri { 𝑝 ∈ ℙ ∣ 𝑝𝐹 } ⊆ ℝ
18 17 a1i ( ( 𝐹 ∈ ( ℤ ‘ 2 ) ∧ 𝐺 ∈ ( ℤ ‘ 2 ) ) → { 𝑝 ∈ ℙ ∣ 𝑝𝐹 } ⊆ ℝ )
19 fiinfcl ( ( < Or ℝ ∧ ( { 𝑝 ∈ ℙ ∣ 𝑝𝐹 } ∈ Fin ∧ { 𝑝 ∈ ℙ ∣ 𝑝𝐹 } ≠ ∅ ∧ { 𝑝 ∈ ℙ ∣ 𝑝𝐹 } ⊆ ℝ ) ) → inf ( { 𝑝 ∈ ℙ ∣ 𝑝𝐹 } , ℝ , < ) ∈ { 𝑝 ∈ ℙ ∣ 𝑝𝐹 } )
20 4 8 12 18 19 syl13anc ( ( 𝐹 ∈ ( ℤ ‘ 2 ) ∧ 𝐺 ∈ ( ℤ ‘ 2 ) ) → inf ( { 𝑝 ∈ ℙ ∣ 𝑝𝐹 } , ℝ , < ) ∈ { 𝑝 ∈ ℙ ∣ 𝑝𝐹 } )
21 1 eleq1i ( 𝐼 ∈ { 𝑝 ∈ ℙ ∣ 𝑝𝐹 } ↔ inf ( { 𝑝 ∈ ℙ ∣ 𝑝𝐹 } , ℝ , < ) ∈ { 𝑝 ∈ ℙ ∣ 𝑝𝐹 } )
22 eluz2nn ( 𝐺 ∈ ( ℤ ‘ 2 ) → 𝐺 ∈ ℕ )
23 22 adantl ( ( 𝐹 ∈ ( ℤ ‘ 2 ) ∧ 𝐺 ∈ ( ℤ ‘ 2 ) ) → 𝐺 ∈ ℕ )
24 prmdvdsfi ( 𝐺 ∈ ℕ → { 𝑝 ∈ ℙ ∣ 𝑝𝐺 } ∈ Fin )
25 23 24 syl ( ( 𝐹 ∈ ( ℤ ‘ 2 ) ∧ 𝐺 ∈ ( ℤ ‘ 2 ) ) → { 𝑝 ∈ ℙ ∣ 𝑝𝐺 } ∈ Fin )
26 exprmfct ( 𝐺 ∈ ( ℤ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝𝐺 )
27 26 adantl ( ( 𝐹 ∈ ( ℤ ‘ 2 ) ∧ 𝐺 ∈ ( ℤ ‘ 2 ) ) → ∃ 𝑝 ∈ ℙ 𝑝𝐺 )
28 rabn0 ( { 𝑝 ∈ ℙ ∣ 𝑝𝐺 } ≠ ∅ ↔ ∃ 𝑝 ∈ ℙ 𝑝𝐺 )
29 27 28 sylibr ( ( 𝐹 ∈ ( ℤ ‘ 2 ) ∧ 𝐺 ∈ ( ℤ ‘ 2 ) ) → { 𝑝 ∈ ℙ ∣ 𝑝𝐺 } ≠ ∅ )
30 ssrab2 { 𝑝 ∈ ℙ ∣ 𝑝𝐺 } ⊆ ℙ
31 30 16 sstri { 𝑝 ∈ ℙ ∣ 𝑝𝐺 } ⊆ ℝ
32 31 a1i ( ( 𝐹 ∈ ( ℤ ‘ 2 ) ∧ 𝐺 ∈ ( ℤ ‘ 2 ) ) → { 𝑝 ∈ ℙ ∣ 𝑝𝐺 } ⊆ ℝ )
33 fiinfcl ( ( < Or ℝ ∧ ( { 𝑝 ∈ ℙ ∣ 𝑝𝐺 } ∈ Fin ∧ { 𝑝 ∈ ℙ ∣ 𝑝𝐺 } ≠ ∅ ∧ { 𝑝 ∈ ℙ ∣ 𝑝𝐺 } ⊆ ℝ ) ) → inf ( { 𝑝 ∈ ℙ ∣ 𝑝𝐺 } , ℝ , < ) ∈ { 𝑝 ∈ ℙ ∣ 𝑝𝐺 } )
34 4 25 29 32 33 syl13anc ( ( 𝐹 ∈ ( ℤ ‘ 2 ) ∧ 𝐺 ∈ ( ℤ ‘ 2 ) ) → inf ( { 𝑝 ∈ ℙ ∣ 𝑝𝐺 } , ℝ , < ) ∈ { 𝑝 ∈ ℙ ∣ 𝑝𝐺 } )
35 2 eleq1i ( 𝐽 ∈ { 𝑝 ∈ ℙ ∣ 𝑝𝐺 } ↔ inf ( { 𝑝 ∈ ℙ ∣ 𝑝𝐺 } , ℝ , < ) ∈ { 𝑝 ∈ ℙ ∣ 𝑝𝐺 } )
36 nfrab1 𝑝 { 𝑝 ∈ ℙ ∣ 𝑝𝐺 }
37 nfcv 𝑝
38 nfcv 𝑝 <
39 36 37 38 nfinf 𝑝 inf ( { 𝑝 ∈ ℙ ∣ 𝑝𝐺 } , ℝ , < )
40 2 39 nfcxfr 𝑝 𝐽
41 nfcv 𝑝
42 nfcv 𝑝
43 nfcv 𝑝 𝐺
44 40 42 43 nfbr 𝑝 𝐽𝐺
45 breq1 ( 𝑝 = 𝐽 → ( 𝑝𝐺𝐽𝐺 ) )
46 40 41 44 45 elrabf ( 𝐽 ∈ { 𝑝 ∈ ℙ ∣ 𝑝𝐺 } ↔ ( 𝐽 ∈ ℙ ∧ 𝐽𝐺 ) )
47 nfrab1 𝑝 { 𝑝 ∈ ℙ ∣ 𝑝𝐹 }
48 47 37 38 nfinf 𝑝 inf ( { 𝑝 ∈ ℙ ∣ 𝑝𝐹 } , ℝ , < )
49 1 48 nfcxfr 𝑝 𝐼
50 nfcv 𝑝 𝐹
51 49 42 50 nfbr 𝑝 𝐼𝐹
52 breq1 ( 𝑝 = 𝐼 → ( 𝑝𝐹𝐼𝐹 ) )
53 49 41 51 52 elrabf ( 𝐼 ∈ { 𝑝 ∈ ℙ ∣ 𝑝𝐹 } ↔ ( 𝐼 ∈ ℙ ∧ 𝐼𝐹 ) )
54 simp2l ( ( ( 𝐽 ∈ ℙ ∧ 𝐽𝐺 ) ∧ ( 𝐼 ∈ ℙ ∧ 𝐼𝐹 ) ∧ 𝐼 = 𝐽 ) → 𝐼 ∈ ℙ )
55 simp2r ( ( ( 𝐽 ∈ ℙ ∧ 𝐽𝐺 ) ∧ ( 𝐼 ∈ ℙ ∧ 𝐼𝐹 ) ∧ 𝐼 = 𝐽 ) → 𝐼𝐹 )
56 simp1r ( ( ( 𝐽 ∈ ℙ ∧ 𝐽𝐺 ) ∧ ( 𝐼 ∈ ℙ ∧ 𝐼𝐹 ) ∧ 𝐼 = 𝐽 ) → 𝐽𝐺 )
57 breq1 ( 𝐼 = 𝐽 → ( 𝐼𝐺𝐽𝐺 ) )
58 57 3ad2ant3 ( ( ( 𝐽 ∈ ℙ ∧ 𝐽𝐺 ) ∧ ( 𝐼 ∈ ℙ ∧ 𝐼𝐹 ) ∧ 𝐼 = 𝐽 ) → ( 𝐼𝐺𝐽𝐺 ) )
59 56 58 mpbird ( ( ( 𝐽 ∈ ℙ ∧ 𝐽𝐺 ) ∧ ( 𝐼 ∈ ℙ ∧ 𝐼𝐹 ) ∧ 𝐼 = 𝐽 ) → 𝐼𝐺 )
60 54 55 59 3jca ( ( ( 𝐽 ∈ ℙ ∧ 𝐽𝐺 ) ∧ ( 𝐼 ∈ ℙ ∧ 𝐼𝐹 ) ∧ 𝐼 = 𝐽 ) → ( 𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺 ) )
61 60 3exp ( ( 𝐽 ∈ ℙ ∧ 𝐽𝐺 ) → ( ( 𝐼 ∈ ℙ ∧ 𝐼𝐹 ) → ( 𝐼 = 𝐽 → ( 𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺 ) ) ) )
62 53 61 syl5bi ( ( 𝐽 ∈ ℙ ∧ 𝐽𝐺 ) → ( 𝐼 ∈ { 𝑝 ∈ ℙ ∣ 𝑝𝐹 } → ( 𝐼 = 𝐽 → ( 𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺 ) ) ) )
63 46 62 sylbi ( 𝐽 ∈ { 𝑝 ∈ ℙ ∣ 𝑝𝐺 } → ( 𝐼 ∈ { 𝑝 ∈ ℙ ∣ 𝑝𝐹 } → ( 𝐼 = 𝐽 → ( 𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺 ) ) ) )
64 63 a1i ( ( 𝐹 ∈ ( ℤ ‘ 2 ) ∧ 𝐺 ∈ ( ℤ ‘ 2 ) ) → ( 𝐽 ∈ { 𝑝 ∈ ℙ ∣ 𝑝𝐺 } → ( 𝐼 ∈ { 𝑝 ∈ ℙ ∣ 𝑝𝐹 } → ( 𝐼 = 𝐽 → ( 𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺 ) ) ) ) )
65 35 64 syl5bir ( ( 𝐹 ∈ ( ℤ ‘ 2 ) ∧ 𝐺 ∈ ( ℤ ‘ 2 ) ) → ( inf ( { 𝑝 ∈ ℙ ∣ 𝑝𝐺 } , ℝ , < ) ∈ { 𝑝 ∈ ℙ ∣ 𝑝𝐺 } → ( 𝐼 ∈ { 𝑝 ∈ ℙ ∣ 𝑝𝐹 } → ( 𝐼 = 𝐽 → ( 𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺 ) ) ) ) )
66 34 65 mpd ( ( 𝐹 ∈ ( ℤ ‘ 2 ) ∧ 𝐺 ∈ ( ℤ ‘ 2 ) ) → ( 𝐼 ∈ { 𝑝 ∈ ℙ ∣ 𝑝𝐹 } → ( 𝐼 = 𝐽 → ( 𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺 ) ) ) )
67 21 66 syl5bir ( ( 𝐹 ∈ ( ℤ ‘ 2 ) ∧ 𝐺 ∈ ( ℤ ‘ 2 ) ) → ( inf ( { 𝑝 ∈ ℙ ∣ 𝑝𝐹 } , ℝ , < ) ∈ { 𝑝 ∈ ℙ ∣ 𝑝𝐹 } → ( 𝐼 = 𝐽 → ( 𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺 ) ) ) )
68 20 67 mpd ( ( 𝐹 ∈ ( ℤ ‘ 2 ) ∧ 𝐺 ∈ ( ℤ ‘ 2 ) ) → ( 𝐼 = 𝐽 → ( 𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺 ) ) )