Metamath Proof Explorer


Theorem 257prm

Description: 257 is a prime number (thefourth Fermat prime). (Contributed by AV, 15-Jun-2021)

Ref Expression
Assertion 257prm 257

Proof

Step Hyp Ref Expression
1 2nn0 20
2 5nn0 50
3 1 2 deccl 250
4 7nn 7
5 3 4 decnncl 257
6 8nn0 80
7 4nn0 40
8 7nn0 70
9 1nn0 10
10 2lt8 2<8
11 5lt10 5<10
12 7lt10 7<10
13 1 6 2 7 8 9 10 11 12 3decltc 257<841
14 5nn 5
15 1 14 decnncl 25
16 1lt10 1<10
17 15 8 9 16 declti 1<257
18 3nn0 30
19 3t2e6 32=6
20 df-7 7=6+1
21 3 18 19 20 dec2dvds ¬2257
22 3nn 3
23 2nn 2
24 3cn 3
25 24 mulridi 31=3
26 25 oveq1i 31+2=3+2
27 3p2e5 3+2=5
28 26 27 eqtri 31+2=5
29 2lt3 2<3
30 22 9 23 28 29 ndvdsi ¬35
31 1 2 8 3dvds2dec 325732+5+7
32 5cn 5
33 2cn 2
34 5p2e7 5+2=7
35 32 33 34 addcomli 2+5=7
36 35 oveq1i 2+5+7=7+7
37 7p7e14 7+7=14
38 36 37 eqtri 2+5+7=14
39 38 breq2i 32+5+7314
40 9 7 3dvdsdec 31431+4
41 4cn 4
42 ax-1cn 1
43 4p1e5 4+1=5
44 41 42 43 addcomli 1+4=5
45 44 breq2i 31+435
46 40 45 bitri 31435
47 31 39 46 3bitri 325735
48 30 47 mtbir ¬3257
49 2lt5 2<5
50 3 23 49 34 dec5dvds2 ¬5257
51 6nn0 60
52 18 51 deccl 360
53 eqid 36=36
54 7t3e21 73=21
55 1 9 7 54 44 decaddi 73+4=25
56 7t6e42 76=42
57 8 18 51 53 1 7 55 56 decmul2c 736=252
58 3 1 2 57 35 decaddi 736+5=257
59 5lt7 5<7
60 4 52 14 58 59 ndvdsi ¬7257
61 1nn 1
62 9 61 decnncl 11
63 1 18 deccl 230
64 4nn 4
65 9 9 deccl 110
66 eqid 23=23
67 65 nn0cni 11
68 67 33 mulcomi 112=211
69 68 oveq1i 112+3=211+3
70 1 11multnc 211=22
71 24 33 27 addcomli 2+3=5
72 1 1 18 70 71 decaddi 211+3=25
73 69 72 eqtri 112+3=25
74 18 11multnc 311=33
75 24 67 74 mulcomli 113=33
76 65 1 18 66 18 18 73 75 decmul2c 1123=253
77 4p3e7 4+3=7
78 41 24 77 addcomli 3+4=7
79 3 18 7 76 78 decaddi 1123+4=257
80 4lt10 4<10
81 61 9 7 80 declti 4<11
82 62 63 64 79 81 ndvdsi ¬11257
83 9 22 decnncl 13
84 9nn0 90
85 9 84 deccl 190
86 10nn 10
87 9 18 deccl 130
88 87 nn0cni 13
89 85 nn0cni 19
90 88 89 mulcomi 1319=1913
91 90 oveq1i 1319+10=1913+10
92 0nn0 00
93 eqid 19=19
94 eqid 10=10
95 88 mullidi 113=13
96 1p1e2 1+1=2
97 eqid 11=11
98 9 9 96 97 decsuc 11+1=12
99 67 42 98 addcomli 1+11=12
100 9 18 9 1 95 99 96 27 decadd 113+1+11=25
101 eqid 13=13
102 9cn 9
103 102 mulridi 91=9
104 103 oveq1i 91+2=9+2
105 9p2e11 9+2=11
106 104 105 eqtri 91+2=11
107 9t3e27 93=27
108 84 9 18 101 8 1 106 107 decmul2c 913=117
109 108 oveq1i 913+0=117+0
110 65 8 deccl 1170
111 110 nn0cni 117
112 111 addridi 117+0=117
113 109 112 eqtri 913+0=117
114 9 84 9 92 93 94 87 8 65 100 113 decmac 1913+10=257
115 91 114 eqtri 1319+10=257
116 3pos 0<3
117 9 92 22 116 declt 10<13
118 83 85 86 115 117 ndvdsi ¬13257
119 9 4 decnncl 17
120 9 2 deccl 150
121 9 8 deccl 170
122 eqid 15=15
123 121 nn0cni 17
124 123 mulridi 171=17
125 8cn 8
126 7cn 7
127 8p7e15 8+7=15
128 125 126 127 addcomli 7+8=15
129 9 8 6 124 96 2 128 decaddci 171+8=25
130 eqid 17=17
131 32 mullidi 15=5
132 131 oveq1i 15+3=5+3
133 5p3e8 5+3=8
134 132 133 eqtri 15+3=8
135 7t5e35 75=35
136 2 9 8 130 2 18 134 135 decmul1c 175=85
137 121 9 2 122 2 6 129 136 decmul2c 1715=255
138 3 2 1 137 34 decaddi 1715+2=257
139 2lt10 2<10
140 61 8 1 139 declti 2<17
141 119 120 23 138 140 ndvdsi ¬17257
142 9nn 9
143 9 142 decnncl 19
144 9pos 0<9
145 9 92 142 144 declt 10<19
146 143 87 86 114 145 ndvdsi ¬19257
147 1 22 decnncl 23
148 65 1 18 66 18 18 72 74 decmul1c 2311=253
149 3 18 7 148 78 decaddi 2311+4=257
150 23 18 7 80 declti 4<23
151 147 65 64 149 150 ndvdsi ¬23257
152 5 13 17 21 48 50 60 82 118 141 146 151 prmlem2 257