Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Number theory (extension)
Fermat numbers
257prm
Next ⟩
fmtno3prm
Metamath Proof Explorer
Ascii
Unicode
Theorem
257prm
Description:
257 is a prime number (the
fourth Fermat prime
).
(Contributed by
AV
, 15-Jun-2021)
Ref
Expression
Assertion
257prm
⊢
257
∈
ℙ
Proof
Step
Hyp
Ref
Expression
1
2nn0
⊢
2
∈
ℕ
0
2
5nn0
⊢
5
∈
ℕ
0
3
1
2
deccl
⊢
25
∈
ℕ
0
4
7nn
⊢
7
∈
ℕ
5
3
4
decnncl
⊢
257
∈
ℕ
6
8nn0
⊢
8
∈
ℕ
0
7
4nn0
⊢
4
∈
ℕ
0
8
7nn0
⊢
7
∈
ℕ
0
9
1nn0
⊢
1
∈
ℕ
0
10
2lt8
⊢
2
<
8
11
5lt10
⊢
5
<
10
12
7lt10
⊢
7
<
10
13
1
6
2
7
8
9
10
11
12
3decltc
⊢
257
<
841
14
5nn
⊢
5
∈
ℕ
15
1
14
decnncl
⊢
25
∈
ℕ
16
1lt10
⊢
1
<
10
17
15
8
9
16
declti
⊢
1
<
257
18
3nn0
⊢
3
∈
ℕ
0
19
3t2e6
⊢
3
⋅
2
=
6
20
df-7
⊢
7
=
6
+
1
21
3
18
19
20
dec2dvds
⊢
¬
2
∥
257
22
3nn
⊢
3
∈
ℕ
23
2nn
⊢
2
∈
ℕ
24
3cn
⊢
3
∈
ℂ
25
24
mulid1i
⊢
3
⋅
1
=
3
26
25
oveq1i
⊢
3
⋅
1
+
2
=
3
+
2
27
3p2e5
⊢
3
+
2
=
5
28
26
27
eqtri
⊢
3
⋅
1
+
2
=
5
29
2lt3
⊢
2
<
3
30
22
9
23
28
29
ndvdsi
⊢
¬
3
∥
5
31
1
2
8
3dvds2dec
⊢
3
∥
257
↔
3
∥
2
+
5
+
7
32
5cn
⊢
5
∈
ℂ
33
2cn
⊢
2
∈
ℂ
34
5p2e7
⊢
5
+
2
=
7
35
32
33
34
addcomli
⊢
2
+
5
=
7
36
35
oveq1i
⊢
2
+
5
+
7
=
7
+
7
37
7p7e14
⊢
7
+
7
=
14
38
36
37
eqtri
⊢
2
+
5
+
7
=
14
39
38
breq2i
⊢
3
∥
2
+
5
+
7
↔
3
∥
14
40
9
7
3dvdsdec
⊢
3
∥
14
↔
3
∥
1
+
4
41
4cn
⊢
4
∈
ℂ
42
ax-1cn
⊢
1
∈
ℂ
43
4p1e5
⊢
4
+
1
=
5
44
41
42
43
addcomli
⊢
1
+
4
=
5
45
44
breq2i
⊢
3
∥
1
+
4
↔
3
∥
5
46
40
45
bitri
⊢
3
∥
14
↔
3
∥
5
47
31
39
46
3bitri
⊢
3
∥
257
↔
3
∥
5
48
30
47
mtbir
⊢
¬
3
∥
257
49
2lt5
⊢
2
<
5
50
3
23
49
34
dec5dvds2
⊢
¬
5
∥
257
51
6nn0
⊢
6
∈
ℕ
0
52
18
51
deccl
⊢
36
∈
ℕ
0
53
eqid
⊢
36
=
36
54
7t3e21
⊢
7
⋅
3
=
21
55
1
9
7
54
44
decaddi
⊢
7
⋅
3
+
4
=
25
56
7t6e42
⊢
7
⋅
6
=
42
57
8
18
51
53
1
7
55
56
decmul2c
⊢
7
⋅
36
=
252
58
3
1
2
57
35
decaddi
⊢
7
⋅
36
+
5
=
257
59
5lt7
⊢
5
<
7
60
4
52
14
58
59
ndvdsi
⊢
¬
7
∥
257
61
1nn
⊢
1
∈
ℕ
62
9
61
decnncl
⊢
11
∈
ℕ
63
1
18
deccl
⊢
23
∈
ℕ
0
64
4nn
⊢
4
∈
ℕ
65
9
9
deccl
⊢
11
∈
ℕ
0
66
eqid
⊢
23
=
23
67
65
nn0cni
⊢
11
∈
ℂ
68
67
33
mulcomi
⊢
11
⋅
2
=
2
⋅
11
69
68
oveq1i
⊢
11
⋅
2
+
3
=
2
⋅
11
+
3
70
1
11multnc
⊢
2
⋅
11
=
22
71
24
33
27
addcomli
⊢
2
+
3
=
5
72
1
1
18
70
71
decaddi
⊢
2
⋅
11
+
3
=
25
73
69
72
eqtri
⊢
11
⋅
2
+
3
=
25
74
18
11multnc
⊢
3
⋅
11
=
33
75
24
67
74
mulcomli
⊢
11
⋅
3
=
33
76
65
1
18
66
18
18
73
75
decmul2c
⊢
11
⋅
23
=
253
77
4p3e7
⊢
4
+
3
=
7
78
41
24
77
addcomli
⊢
3
+
4
=
7
79
3
18
7
76
78
decaddi
⊢
11
⋅
23
+
4
=
257
80
4lt10
⊢
4
<
10
81
61
9
7
80
declti
⊢
4
<
11
82
62
63
64
79
81
ndvdsi
⊢
¬
11
∥
257
83
9
22
decnncl
⊢
13
∈
ℕ
84
9nn0
⊢
9
∈
ℕ
0
85
9
84
deccl
⊢
19
∈
ℕ
0
86
10nn
⊢
10
∈
ℕ
87
9
18
deccl
⊢
13
∈
ℕ
0
88
87
nn0cni
⊢
13
∈
ℂ
89
85
nn0cni
⊢
19
∈
ℂ
90
88
89
mulcomi
⊢
13
⋅
19
=
19
⋅
13
91
90
oveq1i
⊢
13
⋅
19
+
10
=
19
⋅
13
+
10
92
0nn0
⊢
0
∈
ℕ
0
93
eqid
⊢
19
=
19
94
eqid
⊢
10
=
10
95
88
mulid2i
⊢
1
⋅
13
=
13
96
1p1e2
⊢
1
+
1
=
2
97
eqid
⊢
11
=
11
98
9
9
96
97
decsuc
⊢
11
+
1
=
12
99
67
42
98
addcomli
⊢
1
+
11
=
12
100
9
18
9
1
95
99
96
27
decadd
⊢
1
⋅
13
+
1
+
11
=
25
101
eqid
⊢
13
=
13
102
9cn
⊢
9
∈
ℂ
103
102
mulid1i
⊢
9
⋅
1
=
9
104
103
oveq1i
⊢
9
⋅
1
+
2
=
9
+
2
105
9p2e11
⊢
9
+
2
=
11
106
104
105
eqtri
⊢
9
⋅
1
+
2
=
11
107
9t3e27
⊢
9
⋅
3
=
27
108
84
9
18
101
8
1
106
107
decmul2c
⊢
9
⋅
13
=
117
109
108
oveq1i
⊢
9
⋅
13
+
0
=
117
+
0
110
65
8
deccl
⊢
117
∈
ℕ
0
111
110
nn0cni
⊢
117
∈
ℂ
112
111
addid1i
⊢
117
+
0
=
117
113
109
112
eqtri
⊢
9
⋅
13
+
0
=
117
114
9
84
9
92
93
94
87
8
65
100
113
decmac
⊢
19
⋅
13
+
10
=
257
115
91
114
eqtri
⊢
13
⋅
19
+
10
=
257
116
3pos
⊢
0
<
3
117
9
92
22
116
declt
⊢
10
<
13
118
83
85
86
115
117
ndvdsi
⊢
¬
13
∥
257
119
9
4
decnncl
⊢
17
∈
ℕ
120
9
2
deccl
⊢
15
∈
ℕ
0
121
9
8
deccl
⊢
17
∈
ℕ
0
122
eqid
⊢
15
=
15
123
121
nn0cni
⊢
17
∈
ℂ
124
123
mulid1i
⊢
17
⋅
1
=
17
125
8cn
⊢
8
∈
ℂ
126
7cn
⊢
7
∈
ℂ
127
8p7e15
⊢
8
+
7
=
15
128
125
126
127
addcomli
⊢
7
+
8
=
15
129
9
8
6
124
96
2
128
decaddci
⊢
17
⋅
1
+
8
=
25
130
eqid
⊢
17
=
17
131
32
mulid2i
⊢
1
⋅
5
=
5
132
131
oveq1i
⊢
1
⋅
5
+
3
=
5
+
3
133
5p3e8
⊢
5
+
3
=
8
134
132
133
eqtri
⊢
1
⋅
5
+
3
=
8
135
7t5e35
⊢
7
⋅
5
=
35
136
2
9
8
130
2
18
134
135
decmul1c
⊢
17
⋅
5
=
85
137
121
9
2
122
2
6
129
136
decmul2c
⊢
17
⋅
15
=
255
138
3
2
1
137
34
decaddi
⊢
17
⋅
15
+
2
=
257
139
2lt10
⊢
2
<
10
140
61
8
1
139
declti
⊢
2
<
17
141
119
120
23
138
140
ndvdsi
⊢
¬
17
∥
257
142
9nn
⊢
9
∈
ℕ
143
9
142
decnncl
⊢
19
∈
ℕ
144
9pos
⊢
0
<
9
145
9
92
142
144
declt
⊢
10
<
19
146
143
87
86
114
145
ndvdsi
⊢
¬
19
∥
257
147
1
22
decnncl
⊢
23
∈
ℕ
148
65
1
18
66
18
18
72
74
decmul1c
⊢
23
⋅
11
=
253
149
3
18
7
148
78
decaddi
⊢
23
⋅
11
+
4
=
257
150
23
18
7
80
declti
⊢
4
<
23
151
147
65
64
149
150
ndvdsi
⊢
¬
23
∥
257
152
5
13
17
21
48
50
60
82
118
141
146
151
prmlem2
⊢
257
∈
ℙ