Metamath Proof Explorer


Theorem 257prm

Description: 257 is a prime number (thefourth Fermat prime). (Contributed by AV, 15-Jun-2021)

Ref Expression
Assertion 257prm 257

Proof

Step Hyp Ref Expression
1 2nn0 2 0
2 5nn0 5 0
3 1 2 deccl 25 0
4 7nn 7
5 3 4 decnncl 257
6 8nn0 8 0
7 4nn0 4 0
8 7nn0 7 0
9 1nn0 1 0
10 2lt8 2 < 8
11 5lt10 5 < 10
12 7lt10 7 < 10
13 1 6 2 7 8 9 10 11 12 3decltc 257 < 841
14 5nn 5
15 1 14 decnncl 25
16 1lt10 1 < 10
17 15 8 9 16 declti 1 < 257
18 3nn0 3 0
19 3t2e6 3 2 = 6
20 df-7 7 = 6 + 1
21 3 18 19 20 dec2dvds ¬ 2 257
22 3nn 3
23 2nn 2
24 3cn 3
25 24 mulid1i 3 1 = 3
26 25 oveq1i 3 1 + 2 = 3 + 2
27 3p2e5 3 + 2 = 5
28 26 27 eqtri 3 1 + 2 = 5
29 2lt3 2 < 3
30 22 9 23 28 29 ndvdsi ¬ 3 5
31 1 2 8 3dvds2dec 3 257 3 2 + 5 + 7
32 5cn 5
33 2cn 2
34 5p2e7 5 + 2 = 7
35 32 33 34 addcomli 2 + 5 = 7
36 35 oveq1i 2 + 5 + 7 = 7 + 7
37 7p7e14 7 + 7 = 14
38 36 37 eqtri 2 + 5 + 7 = 14
39 38 breq2i 3 2 + 5 + 7 3 14
40 9 7 3dvdsdec 3 14 3 1 + 4
41 4cn 4
42 ax-1cn 1
43 4p1e5 4 + 1 = 5
44 41 42 43 addcomli 1 + 4 = 5
45 44 breq2i 3 1 + 4 3 5
46 40 45 bitri 3 14 3 5
47 31 39 46 3bitri 3 257 3 5
48 30 47 mtbir ¬ 3 257
49 2lt5 2 < 5
50 3 23 49 34 dec5dvds2 ¬ 5 257
51 6nn0 6 0
52 18 51 deccl 36 0
53 eqid 36 = 36
54 7t3e21 7 3 = 21
55 1 9 7 54 44 decaddi 7 3 + 4 = 25
56 7t6e42 7 6 = 42
57 8 18 51 53 1 7 55 56 decmul2c 7 36 = 252
58 3 1 2 57 35 decaddi 7 36 + 5 = 257
59 5lt7 5 < 7
60 4 52 14 58 59 ndvdsi ¬ 7 257
61 1nn 1
62 9 61 decnncl 11
63 1 18 deccl 23 0
64 4nn 4
65 9 9 deccl 11 0
66 eqid 23 = 23
67 65 nn0cni 11
68 67 33 mulcomi 11 2 = 2 11
69 68 oveq1i 11 2 + 3 = 2 11 + 3
70 1 11multnc 2 11 = 22
71 24 33 27 addcomli 2 + 3 = 5
72 1 1 18 70 71 decaddi 2 11 + 3 = 25
73 69 72 eqtri 11 2 + 3 = 25
74 18 11multnc 3 11 = 33
75 24 67 74 mulcomli 11 3 = 33
76 65 1 18 66 18 18 73 75 decmul2c 11 23 = 253
77 4p3e7 4 + 3 = 7
78 41 24 77 addcomli 3 + 4 = 7
79 3 18 7 76 78 decaddi 11 23 + 4 = 257
80 4lt10 4 < 10
81 61 9 7 80 declti 4 < 11
82 62 63 64 79 81 ndvdsi ¬ 11 257
83 9 22 decnncl 13
84 9nn0 9 0
85 9 84 deccl 19 0
86 10nn 10
87 9 18 deccl 13 0
88 87 nn0cni 13
89 85 nn0cni 19
90 88 89 mulcomi 13 19 = 19 13
91 90 oveq1i 13 19 + 10 = 19 13 + 10
92 0nn0 0 0
93 eqid 19 = 19
94 eqid 10 = 10
95 88 mulid2i 1 13 = 13
96 1p1e2 1 + 1 = 2
97 eqid 11 = 11
98 9 9 96 97 decsuc 11 + 1 = 12
99 67 42 98 addcomli 1 + 11 = 12
100 9 18 9 1 95 99 96 27 decadd 1 13 + 1 + 11 = 25
101 eqid 13 = 13
102 9cn 9
103 102 mulid1i 9 1 = 9
104 103 oveq1i 9 1 + 2 = 9 + 2
105 9p2e11 9 + 2 = 11
106 104 105 eqtri 9 1 + 2 = 11
107 9t3e27 9 3 = 27
108 84 9 18 101 8 1 106 107 decmul2c 9 13 = 117
109 108 oveq1i 9 13 + 0 = 117 + 0
110 65 8 deccl 117 0
111 110 nn0cni 117
112 111 addid1i 117 + 0 = 117
113 109 112 eqtri 9 13 + 0 = 117
114 9 84 9 92 93 94 87 8 65 100 113 decmac 19 13 + 10 = 257
115 91 114 eqtri 13 19 + 10 = 257
116 3pos 0 < 3
117 9 92 22 116 declt 10 < 13
118 83 85 86 115 117 ndvdsi ¬ 13 257
119 9 4 decnncl 17
120 9 2 deccl 15 0
121 9 8 deccl 17 0
122 eqid 15 = 15
123 121 nn0cni 17
124 123 mulid1i 17 1 = 17
125 8cn 8
126 7cn 7
127 8p7e15 8 + 7 = 15
128 125 126 127 addcomli 7 + 8 = 15
129 9 8 6 124 96 2 128 decaddci 17 1 + 8 = 25
130 eqid 17 = 17
131 32 mulid2i 1 5 = 5
132 131 oveq1i 1 5 + 3 = 5 + 3
133 5p3e8 5 + 3 = 8
134 132 133 eqtri 1 5 + 3 = 8
135 7t5e35 7 5 = 35
136 2 9 8 130 2 18 134 135 decmul1c 17 5 = 85
137 121 9 2 122 2 6 129 136 decmul2c 17 15 = 255
138 3 2 1 137 34 decaddi 17 15 + 2 = 257
139 2lt10 2 < 10
140 61 8 1 139 declti 2 < 17
141 119 120 23 138 140 ndvdsi ¬ 17 257
142 9nn 9
143 9 142 decnncl 19
144 9pos 0 < 9
145 9 92 142 144 declt 10 < 19
146 143 87 86 114 145 ndvdsi ¬ 19 257
147 1 22 decnncl 23
148 65 1 18 66 18 18 72 74 decmul1c 23 11 = 253
149 3 18 7 148 78 decaddi 23 11 + 4 = 257
150 23 18 7 80 declti 4 < 23
151 147 65 64 149 150 ndvdsi ¬ 23 257
152 5 13 17 21 48 50 60 82 118 141 146 151 prmlem2 257