Description: 257 is a prime number (thefourth Fermat prime). (Contributed by AV, 15-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | 257prm | ⊢ ; ; 2 5 7 ∈ ℙ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
2 | 5nn0 | ⊢ 5 ∈ ℕ0 | |
3 | 1 2 | deccl | ⊢ ; 2 5 ∈ ℕ0 |
4 | 7nn | ⊢ 7 ∈ ℕ | |
5 | 3 4 | decnncl | ⊢ ; ; 2 5 7 ∈ ℕ |
6 | 8nn0 | ⊢ 8 ∈ ℕ0 | |
7 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
8 | 7nn0 | ⊢ 7 ∈ ℕ0 | |
9 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
10 | 2lt8 | ⊢ 2 < 8 | |
11 | 5lt10 | ⊢ 5 < ; 1 0 | |
12 | 7lt10 | ⊢ 7 < ; 1 0 | |
13 | 1 6 2 7 8 9 10 11 12 | 3decltc | ⊢ ; ; 2 5 7 < ; ; 8 4 1 |
14 | 5nn | ⊢ 5 ∈ ℕ | |
15 | 1 14 | decnncl | ⊢ ; 2 5 ∈ ℕ |
16 | 1lt10 | ⊢ 1 < ; 1 0 | |
17 | 15 8 9 16 | declti | ⊢ 1 < ; ; 2 5 7 |
18 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
19 | 3t2e6 | ⊢ ( 3 · 2 ) = 6 | |
20 | df-7 | ⊢ 7 = ( 6 + 1 ) | |
21 | 3 18 19 20 | dec2dvds | ⊢ ¬ 2 ∥ ; ; 2 5 7 |
22 | 3nn | ⊢ 3 ∈ ℕ | |
23 | 2nn | ⊢ 2 ∈ ℕ | |
24 | 3cn | ⊢ 3 ∈ ℂ | |
25 | 24 | mulid1i | ⊢ ( 3 · 1 ) = 3 |
26 | 25 | oveq1i | ⊢ ( ( 3 · 1 ) + 2 ) = ( 3 + 2 ) |
27 | 3p2e5 | ⊢ ( 3 + 2 ) = 5 | |
28 | 26 27 | eqtri | ⊢ ( ( 3 · 1 ) + 2 ) = 5 |
29 | 2lt3 | ⊢ 2 < 3 | |
30 | 22 9 23 28 29 | ndvdsi | ⊢ ¬ 3 ∥ 5 |
31 | 1 2 8 | 3dvds2dec | ⊢ ( 3 ∥ ; ; 2 5 7 ↔ 3 ∥ ( ( 2 + 5 ) + 7 ) ) |
32 | 5cn | ⊢ 5 ∈ ℂ | |
33 | 2cn | ⊢ 2 ∈ ℂ | |
34 | 5p2e7 | ⊢ ( 5 + 2 ) = 7 | |
35 | 32 33 34 | addcomli | ⊢ ( 2 + 5 ) = 7 |
36 | 35 | oveq1i | ⊢ ( ( 2 + 5 ) + 7 ) = ( 7 + 7 ) |
37 | 7p7e14 | ⊢ ( 7 + 7 ) = ; 1 4 | |
38 | 36 37 | eqtri | ⊢ ( ( 2 + 5 ) + 7 ) = ; 1 4 |
39 | 38 | breq2i | ⊢ ( 3 ∥ ( ( 2 + 5 ) + 7 ) ↔ 3 ∥ ; 1 4 ) |
40 | 9 7 | 3dvdsdec | ⊢ ( 3 ∥ ; 1 4 ↔ 3 ∥ ( 1 + 4 ) ) |
41 | 4cn | ⊢ 4 ∈ ℂ | |
42 | ax-1cn | ⊢ 1 ∈ ℂ | |
43 | 4p1e5 | ⊢ ( 4 + 1 ) = 5 | |
44 | 41 42 43 | addcomli | ⊢ ( 1 + 4 ) = 5 |
45 | 44 | breq2i | ⊢ ( 3 ∥ ( 1 + 4 ) ↔ 3 ∥ 5 ) |
46 | 40 45 | bitri | ⊢ ( 3 ∥ ; 1 4 ↔ 3 ∥ 5 ) |
47 | 31 39 46 | 3bitri | ⊢ ( 3 ∥ ; ; 2 5 7 ↔ 3 ∥ 5 ) |
48 | 30 47 | mtbir | ⊢ ¬ 3 ∥ ; ; 2 5 7 |
49 | 2lt5 | ⊢ 2 < 5 | |
50 | 3 23 49 34 | dec5dvds2 | ⊢ ¬ 5 ∥ ; ; 2 5 7 |
51 | 6nn0 | ⊢ 6 ∈ ℕ0 | |
52 | 18 51 | deccl | ⊢ ; 3 6 ∈ ℕ0 |
53 | eqid | ⊢ ; 3 6 = ; 3 6 | |
54 | 7t3e21 | ⊢ ( 7 · 3 ) = ; 2 1 | |
55 | 1 9 7 54 44 | decaddi | ⊢ ( ( 7 · 3 ) + 4 ) = ; 2 5 |
56 | 7t6e42 | ⊢ ( 7 · 6 ) = ; 4 2 | |
57 | 8 18 51 53 1 7 55 56 | decmul2c | ⊢ ( 7 · ; 3 6 ) = ; ; 2 5 2 |
58 | 3 1 2 57 35 | decaddi | ⊢ ( ( 7 · ; 3 6 ) + 5 ) = ; ; 2 5 7 |
59 | 5lt7 | ⊢ 5 < 7 | |
60 | 4 52 14 58 59 | ndvdsi | ⊢ ¬ 7 ∥ ; ; 2 5 7 |
61 | 1nn | ⊢ 1 ∈ ℕ | |
62 | 9 61 | decnncl | ⊢ ; 1 1 ∈ ℕ |
63 | 1 18 | deccl | ⊢ ; 2 3 ∈ ℕ0 |
64 | 4nn | ⊢ 4 ∈ ℕ | |
65 | 9 9 | deccl | ⊢ ; 1 1 ∈ ℕ0 |
66 | eqid | ⊢ ; 2 3 = ; 2 3 | |
67 | 65 | nn0cni | ⊢ ; 1 1 ∈ ℂ |
68 | 67 33 | mulcomi | ⊢ ( ; 1 1 · 2 ) = ( 2 · ; 1 1 ) |
69 | 68 | oveq1i | ⊢ ( ( ; 1 1 · 2 ) + 3 ) = ( ( 2 · ; 1 1 ) + 3 ) |
70 | 1 | 11multnc | ⊢ ( 2 · ; 1 1 ) = ; 2 2 |
71 | 24 33 27 | addcomli | ⊢ ( 2 + 3 ) = 5 |
72 | 1 1 18 70 71 | decaddi | ⊢ ( ( 2 · ; 1 1 ) + 3 ) = ; 2 5 |
73 | 69 72 | eqtri | ⊢ ( ( ; 1 1 · 2 ) + 3 ) = ; 2 5 |
74 | 18 | 11multnc | ⊢ ( 3 · ; 1 1 ) = ; 3 3 |
75 | 24 67 74 | mulcomli | ⊢ ( ; 1 1 · 3 ) = ; 3 3 |
76 | 65 1 18 66 18 18 73 75 | decmul2c | ⊢ ( ; 1 1 · ; 2 3 ) = ; ; 2 5 3 |
77 | 4p3e7 | ⊢ ( 4 + 3 ) = 7 | |
78 | 41 24 77 | addcomli | ⊢ ( 3 + 4 ) = 7 |
79 | 3 18 7 76 78 | decaddi | ⊢ ( ( ; 1 1 · ; 2 3 ) + 4 ) = ; ; 2 5 7 |
80 | 4lt10 | ⊢ 4 < ; 1 0 | |
81 | 61 9 7 80 | declti | ⊢ 4 < ; 1 1 |
82 | 62 63 64 79 81 | ndvdsi | ⊢ ¬ ; 1 1 ∥ ; ; 2 5 7 |
83 | 9 22 | decnncl | ⊢ ; 1 3 ∈ ℕ |
84 | 9nn0 | ⊢ 9 ∈ ℕ0 | |
85 | 9 84 | deccl | ⊢ ; 1 9 ∈ ℕ0 |
86 | 10nn | ⊢ ; 1 0 ∈ ℕ | |
87 | 9 18 | deccl | ⊢ ; 1 3 ∈ ℕ0 |
88 | 87 | nn0cni | ⊢ ; 1 3 ∈ ℂ |
89 | 85 | nn0cni | ⊢ ; 1 9 ∈ ℂ |
90 | 88 89 | mulcomi | ⊢ ( ; 1 3 · ; 1 9 ) = ( ; 1 9 · ; 1 3 ) |
91 | 90 | oveq1i | ⊢ ( ( ; 1 3 · ; 1 9 ) + ; 1 0 ) = ( ( ; 1 9 · ; 1 3 ) + ; 1 0 ) |
92 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
93 | eqid | ⊢ ; 1 9 = ; 1 9 | |
94 | eqid | ⊢ ; 1 0 = ; 1 0 | |
95 | 88 | mulid2i | ⊢ ( 1 · ; 1 3 ) = ; 1 3 |
96 | 1p1e2 | ⊢ ( 1 + 1 ) = 2 | |
97 | eqid | ⊢ ; 1 1 = ; 1 1 | |
98 | 9 9 96 97 | decsuc | ⊢ ( ; 1 1 + 1 ) = ; 1 2 |
99 | 67 42 98 | addcomli | ⊢ ( 1 + ; 1 1 ) = ; 1 2 |
100 | 9 18 9 1 95 99 96 27 | decadd | ⊢ ( ( 1 · ; 1 3 ) + ( 1 + ; 1 1 ) ) = ; 2 5 |
101 | eqid | ⊢ ; 1 3 = ; 1 3 | |
102 | 9cn | ⊢ 9 ∈ ℂ | |
103 | 102 | mulid1i | ⊢ ( 9 · 1 ) = 9 |
104 | 103 | oveq1i | ⊢ ( ( 9 · 1 ) + 2 ) = ( 9 + 2 ) |
105 | 9p2e11 | ⊢ ( 9 + 2 ) = ; 1 1 | |
106 | 104 105 | eqtri | ⊢ ( ( 9 · 1 ) + 2 ) = ; 1 1 |
107 | 9t3e27 | ⊢ ( 9 · 3 ) = ; 2 7 | |
108 | 84 9 18 101 8 1 106 107 | decmul2c | ⊢ ( 9 · ; 1 3 ) = ; ; 1 1 7 |
109 | 108 | oveq1i | ⊢ ( ( 9 · ; 1 3 ) + 0 ) = ( ; ; 1 1 7 + 0 ) |
110 | 65 8 | deccl | ⊢ ; ; 1 1 7 ∈ ℕ0 |
111 | 110 | nn0cni | ⊢ ; ; 1 1 7 ∈ ℂ |
112 | 111 | addid1i | ⊢ ( ; ; 1 1 7 + 0 ) = ; ; 1 1 7 |
113 | 109 112 | eqtri | ⊢ ( ( 9 · ; 1 3 ) + 0 ) = ; ; 1 1 7 |
114 | 9 84 9 92 93 94 87 8 65 100 113 | decmac | ⊢ ( ( ; 1 9 · ; 1 3 ) + ; 1 0 ) = ; ; 2 5 7 |
115 | 91 114 | eqtri | ⊢ ( ( ; 1 3 · ; 1 9 ) + ; 1 0 ) = ; ; 2 5 7 |
116 | 3pos | ⊢ 0 < 3 | |
117 | 9 92 22 116 | declt | ⊢ ; 1 0 < ; 1 3 |
118 | 83 85 86 115 117 | ndvdsi | ⊢ ¬ ; 1 3 ∥ ; ; 2 5 7 |
119 | 9 4 | decnncl | ⊢ ; 1 7 ∈ ℕ |
120 | 9 2 | deccl | ⊢ ; 1 5 ∈ ℕ0 |
121 | 9 8 | deccl | ⊢ ; 1 7 ∈ ℕ0 |
122 | eqid | ⊢ ; 1 5 = ; 1 5 | |
123 | 121 | nn0cni | ⊢ ; 1 7 ∈ ℂ |
124 | 123 | mulid1i | ⊢ ( ; 1 7 · 1 ) = ; 1 7 |
125 | 8cn | ⊢ 8 ∈ ℂ | |
126 | 7cn | ⊢ 7 ∈ ℂ | |
127 | 8p7e15 | ⊢ ( 8 + 7 ) = ; 1 5 | |
128 | 125 126 127 | addcomli | ⊢ ( 7 + 8 ) = ; 1 5 |
129 | 9 8 6 124 96 2 128 | decaddci | ⊢ ( ( ; 1 7 · 1 ) + 8 ) = ; 2 5 |
130 | eqid | ⊢ ; 1 7 = ; 1 7 | |
131 | 32 | mulid2i | ⊢ ( 1 · 5 ) = 5 |
132 | 131 | oveq1i | ⊢ ( ( 1 · 5 ) + 3 ) = ( 5 + 3 ) |
133 | 5p3e8 | ⊢ ( 5 + 3 ) = 8 | |
134 | 132 133 | eqtri | ⊢ ( ( 1 · 5 ) + 3 ) = 8 |
135 | 7t5e35 | ⊢ ( 7 · 5 ) = ; 3 5 | |
136 | 2 9 8 130 2 18 134 135 | decmul1c | ⊢ ( ; 1 7 · 5 ) = ; 8 5 |
137 | 121 9 2 122 2 6 129 136 | decmul2c | ⊢ ( ; 1 7 · ; 1 5 ) = ; ; 2 5 5 |
138 | 3 2 1 137 34 | decaddi | ⊢ ( ( ; 1 7 · ; 1 5 ) + 2 ) = ; ; 2 5 7 |
139 | 2lt10 | ⊢ 2 < ; 1 0 | |
140 | 61 8 1 139 | declti | ⊢ 2 < ; 1 7 |
141 | 119 120 23 138 140 | ndvdsi | ⊢ ¬ ; 1 7 ∥ ; ; 2 5 7 |
142 | 9nn | ⊢ 9 ∈ ℕ | |
143 | 9 142 | decnncl | ⊢ ; 1 9 ∈ ℕ |
144 | 9pos | ⊢ 0 < 9 | |
145 | 9 92 142 144 | declt | ⊢ ; 1 0 < ; 1 9 |
146 | 143 87 86 114 145 | ndvdsi | ⊢ ¬ ; 1 9 ∥ ; ; 2 5 7 |
147 | 1 22 | decnncl | ⊢ ; 2 3 ∈ ℕ |
148 | 65 1 18 66 18 18 72 74 | decmul1c | ⊢ ( ; 2 3 · ; 1 1 ) = ; ; 2 5 3 |
149 | 3 18 7 148 78 | decaddi | ⊢ ( ( ; 2 3 · ; 1 1 ) + 4 ) = ; ; 2 5 7 |
150 | 23 18 7 80 | declti | ⊢ 4 < ; 2 3 |
151 | 147 65 64 149 150 | ndvdsi | ⊢ ¬ ; 2 3 ∥ ; ; 2 5 7 |
152 | 5 13 17 21 48 50 60 82 118 141 146 151 | prmlem2 | ⊢ ; ; 2 5 7 ∈ ℙ |