Description: 257 is a prime number (thefourth Fermat prime). (Contributed by AV, 15-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 257prm | ⊢ ; ; 2 5 7 ∈ ℙ | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 2 | 5nn0 | ⊢ 5 ∈ ℕ0 | |
| 3 | 1 2 | deccl | ⊢ ; 2 5 ∈ ℕ0 | 
| 4 | 7nn | ⊢ 7 ∈ ℕ | |
| 5 | 3 4 | decnncl | ⊢ ; ; 2 5 7 ∈ ℕ | 
| 6 | 8nn0 | ⊢ 8 ∈ ℕ0 | |
| 7 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
| 8 | 7nn0 | ⊢ 7 ∈ ℕ0 | |
| 9 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 10 | 2lt8 | ⊢ 2 < 8 | |
| 11 | 5lt10 | ⊢ 5 < ; 1 0 | |
| 12 | 7lt10 | ⊢ 7 < ; 1 0 | |
| 13 | 1 6 2 7 8 9 10 11 12 | 3decltc | ⊢ ; ; 2 5 7 < ; ; 8 4 1 | 
| 14 | 5nn | ⊢ 5 ∈ ℕ | |
| 15 | 1 14 | decnncl | ⊢ ; 2 5 ∈ ℕ | 
| 16 | 1lt10 | ⊢ 1 < ; 1 0 | |
| 17 | 15 8 9 16 | declti | ⊢ 1 < ; ; 2 5 7 | 
| 18 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
| 19 | 3t2e6 | ⊢ ( 3 · 2 ) = 6 | |
| 20 | df-7 | ⊢ 7 = ( 6 + 1 ) | |
| 21 | 3 18 19 20 | dec2dvds | ⊢ ¬ 2 ∥ ; ; 2 5 7 | 
| 22 | 3nn | ⊢ 3 ∈ ℕ | |
| 23 | 2nn | ⊢ 2 ∈ ℕ | |
| 24 | 3cn | ⊢ 3 ∈ ℂ | |
| 25 | 24 | mulridi | ⊢ ( 3 · 1 ) = 3 | 
| 26 | 25 | oveq1i | ⊢ ( ( 3 · 1 ) + 2 ) = ( 3 + 2 ) | 
| 27 | 3p2e5 | ⊢ ( 3 + 2 ) = 5 | |
| 28 | 26 27 | eqtri | ⊢ ( ( 3 · 1 ) + 2 ) = 5 | 
| 29 | 2lt3 | ⊢ 2 < 3 | |
| 30 | 22 9 23 28 29 | ndvdsi | ⊢ ¬ 3 ∥ 5 | 
| 31 | 1 2 8 | 3dvds2dec | ⊢ ( 3 ∥ ; ; 2 5 7 ↔ 3 ∥ ( ( 2 + 5 ) + 7 ) ) | 
| 32 | 5cn | ⊢ 5 ∈ ℂ | |
| 33 | 2cn | ⊢ 2 ∈ ℂ | |
| 34 | 5p2e7 | ⊢ ( 5 + 2 ) = 7 | |
| 35 | 32 33 34 | addcomli | ⊢ ( 2 + 5 ) = 7 | 
| 36 | 35 | oveq1i | ⊢ ( ( 2 + 5 ) + 7 ) = ( 7 + 7 ) | 
| 37 | 7p7e14 | ⊢ ( 7 + 7 ) = ; 1 4 | |
| 38 | 36 37 | eqtri | ⊢ ( ( 2 + 5 ) + 7 ) = ; 1 4 | 
| 39 | 38 | breq2i | ⊢ ( 3 ∥ ( ( 2 + 5 ) + 7 ) ↔ 3 ∥ ; 1 4 ) | 
| 40 | 9 7 | 3dvdsdec | ⊢ ( 3 ∥ ; 1 4 ↔ 3 ∥ ( 1 + 4 ) ) | 
| 41 | 4cn | ⊢ 4 ∈ ℂ | |
| 42 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 43 | 4p1e5 | ⊢ ( 4 + 1 ) = 5 | |
| 44 | 41 42 43 | addcomli | ⊢ ( 1 + 4 ) = 5 | 
| 45 | 44 | breq2i | ⊢ ( 3 ∥ ( 1 + 4 ) ↔ 3 ∥ 5 ) | 
| 46 | 40 45 | bitri | ⊢ ( 3 ∥ ; 1 4 ↔ 3 ∥ 5 ) | 
| 47 | 31 39 46 | 3bitri | ⊢ ( 3 ∥ ; ; 2 5 7 ↔ 3 ∥ 5 ) | 
| 48 | 30 47 | mtbir | ⊢ ¬ 3 ∥ ; ; 2 5 7 | 
| 49 | 2lt5 | ⊢ 2 < 5 | |
| 50 | 3 23 49 34 | dec5dvds2 | ⊢ ¬ 5 ∥ ; ; 2 5 7 | 
| 51 | 6nn0 | ⊢ 6 ∈ ℕ0 | |
| 52 | 18 51 | deccl | ⊢ ; 3 6 ∈ ℕ0 | 
| 53 | eqid | ⊢ ; 3 6 = ; 3 6 | |
| 54 | 7t3e21 | ⊢ ( 7 · 3 ) = ; 2 1 | |
| 55 | 1 9 7 54 44 | decaddi | ⊢ ( ( 7 · 3 ) + 4 ) = ; 2 5 | 
| 56 | 7t6e42 | ⊢ ( 7 · 6 ) = ; 4 2 | |
| 57 | 8 18 51 53 1 7 55 56 | decmul2c | ⊢ ( 7 · ; 3 6 ) = ; ; 2 5 2 | 
| 58 | 3 1 2 57 35 | decaddi | ⊢ ( ( 7 · ; 3 6 ) + 5 ) = ; ; 2 5 7 | 
| 59 | 5lt7 | ⊢ 5 < 7 | |
| 60 | 4 52 14 58 59 | ndvdsi | ⊢ ¬ 7 ∥ ; ; 2 5 7 | 
| 61 | 1nn | ⊢ 1 ∈ ℕ | |
| 62 | 9 61 | decnncl | ⊢ ; 1 1 ∈ ℕ | 
| 63 | 1 18 | deccl | ⊢ ; 2 3 ∈ ℕ0 | 
| 64 | 4nn | ⊢ 4 ∈ ℕ | |
| 65 | 9 9 | deccl | ⊢ ; 1 1 ∈ ℕ0 | 
| 66 | eqid | ⊢ ; 2 3 = ; 2 3 | |
| 67 | 65 | nn0cni | ⊢ ; 1 1 ∈ ℂ | 
| 68 | 67 33 | mulcomi | ⊢ ( ; 1 1 · 2 ) = ( 2 · ; 1 1 ) | 
| 69 | 68 | oveq1i | ⊢ ( ( ; 1 1 · 2 ) + 3 ) = ( ( 2 · ; 1 1 ) + 3 ) | 
| 70 | 1 | 11multnc | ⊢ ( 2 · ; 1 1 ) = ; 2 2 | 
| 71 | 24 33 27 | addcomli | ⊢ ( 2 + 3 ) = 5 | 
| 72 | 1 1 18 70 71 | decaddi | ⊢ ( ( 2 · ; 1 1 ) + 3 ) = ; 2 5 | 
| 73 | 69 72 | eqtri | ⊢ ( ( ; 1 1 · 2 ) + 3 ) = ; 2 5 | 
| 74 | 18 | 11multnc | ⊢ ( 3 · ; 1 1 ) = ; 3 3 | 
| 75 | 24 67 74 | mulcomli | ⊢ ( ; 1 1 · 3 ) = ; 3 3 | 
| 76 | 65 1 18 66 18 18 73 75 | decmul2c | ⊢ ( ; 1 1 · ; 2 3 ) = ; ; 2 5 3 | 
| 77 | 4p3e7 | ⊢ ( 4 + 3 ) = 7 | |
| 78 | 41 24 77 | addcomli | ⊢ ( 3 + 4 ) = 7 | 
| 79 | 3 18 7 76 78 | decaddi | ⊢ ( ( ; 1 1 · ; 2 3 ) + 4 ) = ; ; 2 5 7 | 
| 80 | 4lt10 | ⊢ 4 < ; 1 0 | |
| 81 | 61 9 7 80 | declti | ⊢ 4 < ; 1 1 | 
| 82 | 62 63 64 79 81 | ndvdsi | ⊢ ¬ ; 1 1 ∥ ; ; 2 5 7 | 
| 83 | 9 22 | decnncl | ⊢ ; 1 3 ∈ ℕ | 
| 84 | 9nn0 | ⊢ 9 ∈ ℕ0 | |
| 85 | 9 84 | deccl | ⊢ ; 1 9 ∈ ℕ0 | 
| 86 | 10nn | ⊢ ; 1 0 ∈ ℕ | |
| 87 | 9 18 | deccl | ⊢ ; 1 3 ∈ ℕ0 | 
| 88 | 87 | nn0cni | ⊢ ; 1 3 ∈ ℂ | 
| 89 | 85 | nn0cni | ⊢ ; 1 9 ∈ ℂ | 
| 90 | 88 89 | mulcomi | ⊢ ( ; 1 3 · ; 1 9 ) = ( ; 1 9 · ; 1 3 ) | 
| 91 | 90 | oveq1i | ⊢ ( ( ; 1 3 · ; 1 9 ) + ; 1 0 ) = ( ( ; 1 9 · ; 1 3 ) + ; 1 0 ) | 
| 92 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 93 | eqid | ⊢ ; 1 9 = ; 1 9 | |
| 94 | eqid | ⊢ ; 1 0 = ; 1 0 | |
| 95 | 88 | mullidi | ⊢ ( 1 · ; 1 3 ) = ; 1 3 | 
| 96 | 1p1e2 | ⊢ ( 1 + 1 ) = 2 | |
| 97 | eqid | ⊢ ; 1 1 = ; 1 1 | |
| 98 | 9 9 96 97 | decsuc | ⊢ ( ; 1 1 + 1 ) = ; 1 2 | 
| 99 | 67 42 98 | addcomli | ⊢ ( 1 + ; 1 1 ) = ; 1 2 | 
| 100 | 9 18 9 1 95 99 96 27 | decadd | ⊢ ( ( 1 · ; 1 3 ) + ( 1 + ; 1 1 ) ) = ; 2 5 | 
| 101 | eqid | ⊢ ; 1 3 = ; 1 3 | |
| 102 | 9cn | ⊢ 9 ∈ ℂ | |
| 103 | 102 | mulridi | ⊢ ( 9 · 1 ) = 9 | 
| 104 | 103 | oveq1i | ⊢ ( ( 9 · 1 ) + 2 ) = ( 9 + 2 ) | 
| 105 | 9p2e11 | ⊢ ( 9 + 2 ) = ; 1 1 | |
| 106 | 104 105 | eqtri | ⊢ ( ( 9 · 1 ) + 2 ) = ; 1 1 | 
| 107 | 9t3e27 | ⊢ ( 9 · 3 ) = ; 2 7 | |
| 108 | 84 9 18 101 8 1 106 107 | decmul2c | ⊢ ( 9 · ; 1 3 ) = ; ; 1 1 7 | 
| 109 | 108 | oveq1i | ⊢ ( ( 9 · ; 1 3 ) + 0 ) = ( ; ; 1 1 7 + 0 ) | 
| 110 | 65 8 | deccl | ⊢ ; ; 1 1 7 ∈ ℕ0 | 
| 111 | 110 | nn0cni | ⊢ ; ; 1 1 7 ∈ ℂ | 
| 112 | 111 | addridi | ⊢ ( ; ; 1 1 7 + 0 ) = ; ; 1 1 7 | 
| 113 | 109 112 | eqtri | ⊢ ( ( 9 · ; 1 3 ) + 0 ) = ; ; 1 1 7 | 
| 114 | 9 84 9 92 93 94 87 8 65 100 113 | decmac | ⊢ ( ( ; 1 9 · ; 1 3 ) + ; 1 0 ) = ; ; 2 5 7 | 
| 115 | 91 114 | eqtri | ⊢ ( ( ; 1 3 · ; 1 9 ) + ; 1 0 ) = ; ; 2 5 7 | 
| 116 | 3pos | ⊢ 0 < 3 | |
| 117 | 9 92 22 116 | declt | ⊢ ; 1 0 < ; 1 3 | 
| 118 | 83 85 86 115 117 | ndvdsi | ⊢ ¬ ; 1 3 ∥ ; ; 2 5 7 | 
| 119 | 9 4 | decnncl | ⊢ ; 1 7 ∈ ℕ | 
| 120 | 9 2 | deccl | ⊢ ; 1 5 ∈ ℕ0 | 
| 121 | 9 8 | deccl | ⊢ ; 1 7 ∈ ℕ0 | 
| 122 | eqid | ⊢ ; 1 5 = ; 1 5 | |
| 123 | 121 | nn0cni | ⊢ ; 1 7 ∈ ℂ | 
| 124 | 123 | mulridi | ⊢ ( ; 1 7 · 1 ) = ; 1 7 | 
| 125 | 8cn | ⊢ 8 ∈ ℂ | |
| 126 | 7cn | ⊢ 7 ∈ ℂ | |
| 127 | 8p7e15 | ⊢ ( 8 + 7 ) = ; 1 5 | |
| 128 | 125 126 127 | addcomli | ⊢ ( 7 + 8 ) = ; 1 5 | 
| 129 | 9 8 6 124 96 2 128 | decaddci | ⊢ ( ( ; 1 7 · 1 ) + 8 ) = ; 2 5 | 
| 130 | eqid | ⊢ ; 1 7 = ; 1 7 | |
| 131 | 32 | mullidi | ⊢ ( 1 · 5 ) = 5 | 
| 132 | 131 | oveq1i | ⊢ ( ( 1 · 5 ) + 3 ) = ( 5 + 3 ) | 
| 133 | 5p3e8 | ⊢ ( 5 + 3 ) = 8 | |
| 134 | 132 133 | eqtri | ⊢ ( ( 1 · 5 ) + 3 ) = 8 | 
| 135 | 7t5e35 | ⊢ ( 7 · 5 ) = ; 3 5 | |
| 136 | 2 9 8 130 2 18 134 135 | decmul1c | ⊢ ( ; 1 7 · 5 ) = ; 8 5 | 
| 137 | 121 9 2 122 2 6 129 136 | decmul2c | ⊢ ( ; 1 7 · ; 1 5 ) = ; ; 2 5 5 | 
| 138 | 3 2 1 137 34 | decaddi | ⊢ ( ( ; 1 7 · ; 1 5 ) + 2 ) = ; ; 2 5 7 | 
| 139 | 2lt10 | ⊢ 2 < ; 1 0 | |
| 140 | 61 8 1 139 | declti | ⊢ 2 < ; 1 7 | 
| 141 | 119 120 23 138 140 | ndvdsi | ⊢ ¬ ; 1 7 ∥ ; ; 2 5 7 | 
| 142 | 9nn | ⊢ 9 ∈ ℕ | |
| 143 | 9 142 | decnncl | ⊢ ; 1 9 ∈ ℕ | 
| 144 | 9pos | ⊢ 0 < 9 | |
| 145 | 9 92 142 144 | declt | ⊢ ; 1 0 < ; 1 9 | 
| 146 | 143 87 86 114 145 | ndvdsi | ⊢ ¬ ; 1 9 ∥ ; ; 2 5 7 | 
| 147 | 1 22 | decnncl | ⊢ ; 2 3 ∈ ℕ | 
| 148 | 65 1 18 66 18 18 72 74 | decmul1c | ⊢ ( ; 2 3 · ; 1 1 ) = ; ; 2 5 3 | 
| 149 | 3 18 7 148 78 | decaddi | ⊢ ( ( ; 2 3 · ; 1 1 ) + 4 ) = ; ; 2 5 7 | 
| 150 | 23 18 7 80 | declti | ⊢ 4 < ; 2 3 | 
| 151 | 147 65 64 149 150 | ndvdsi | ⊢ ¬ ; 2 3 ∥ ; ; 2 5 7 | 
| 152 | 5 13 17 21 48 50 60 82 118 141 146 151 | prmlem2 | ⊢ ; ; 2 5 7 ∈ ℙ |