Metamath Proof Explorer
		
		
		
		Description:  Comparing two decimal integers with three "digits" (unequal higher
       places).  (Contributed by AV, 15-Jun-2021)  (Revised by AV, 6-Sep-2021)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						3decltc.a | 
						⊢ 𝐴  ∈  ℕ0  | 
					
					
						 | 
						 | 
						3decltc.b | 
						⊢ 𝐵  ∈  ℕ0  | 
					
					
						 | 
						 | 
						3decltc.c | 
						⊢ 𝐶  ∈  ℕ0  | 
					
					
						 | 
						 | 
						3decltc.d | 
						⊢ 𝐷  ∈  ℕ0  | 
					
					
						 | 
						 | 
						3decltc.e | 
						⊢ 𝐸  ∈  ℕ0  | 
					
					
						 | 
						 | 
						3decltc.f | 
						⊢ 𝐹  ∈  ℕ0  | 
					
					
						 | 
						 | 
						3decltc.3 | 
						⊢ 𝐴  <  𝐵  | 
					
					
						 | 
						 | 
						3decltc.1 | 
						⊢ 𝐶  <  ; 1 0  | 
					
					
						 | 
						 | 
						3decltc.2 | 
						⊢ 𝐸  <  ; 1 0  | 
					
				
					 | 
					Assertion | 
					3decltc | 
					⊢  ; ; 𝐴 𝐶 𝐸  <  ; ; 𝐵 𝐷 𝐹  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							3decltc.a | 
							⊢ 𝐴  ∈  ℕ0  | 
						
						
							| 2 | 
							
								
							 | 
							3decltc.b | 
							⊢ 𝐵  ∈  ℕ0  | 
						
						
							| 3 | 
							
								
							 | 
							3decltc.c | 
							⊢ 𝐶  ∈  ℕ0  | 
						
						
							| 4 | 
							
								
							 | 
							3decltc.d | 
							⊢ 𝐷  ∈  ℕ0  | 
						
						
							| 5 | 
							
								
							 | 
							3decltc.e | 
							⊢ 𝐸  ∈  ℕ0  | 
						
						
							| 6 | 
							
								
							 | 
							3decltc.f | 
							⊢ 𝐹  ∈  ℕ0  | 
						
						
							| 7 | 
							
								
							 | 
							3decltc.3 | 
							⊢ 𝐴  <  𝐵  | 
						
						
							| 8 | 
							
								
							 | 
							3decltc.1 | 
							⊢ 𝐶  <  ; 1 0  | 
						
						
							| 9 | 
							
								
							 | 
							3decltc.2 | 
							⊢ 𝐸  <  ; 1 0  | 
						
						
							| 10 | 
							
								1 3
							 | 
							deccl | 
							⊢ ; 𝐴 𝐶  ∈  ℕ0  | 
						
						
							| 11 | 
							
								2 4
							 | 
							deccl | 
							⊢ ; 𝐵 𝐷  ∈  ℕ0  | 
						
						
							| 12 | 
							
								1 2 3 4 8 7
							 | 
							decltc | 
							⊢ ; 𝐴 𝐶  <  ; 𝐵 𝐷  | 
						
						
							| 13 | 
							
								10 11 5 6 9 12
							 | 
							decltc | 
							⊢ ; ; 𝐴 𝐶 𝐸  <  ; ; 𝐵 𝐷 𝐹  |