Metamath Proof Explorer


Theorem fmtno3prm

Description: The 3 rd Fermat number is a prime (_fourth Fermat prime_). (Contributed by AV, 15-Jun-2021)

Ref Expression
Assertion fmtno3prm ( FermatNo ‘ 3 ) ∈ ℙ

Proof

Step Hyp Ref Expression
1 fmtno3 ( FermatNo ‘ 3 ) = 2 5 7
2 257prm 2 5 7 ∈ ℙ
3 1 2 eqeltri ( FermatNo ‘ 3 ) ∈ ℙ