| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3dvdsdec.a | ⊢ 𝐴  ∈  ℕ0 | 
						
							| 2 |  | 3dvdsdec.b | ⊢ 𝐵  ∈  ℕ0 | 
						
							| 3 |  | dfdec10 | ⊢ ; 𝐴 𝐵  =  ( ( ; 1 0  ·  𝐴 )  +  𝐵 ) | 
						
							| 4 |  | 9p1e10 | ⊢ ( 9  +  1 )  =  ; 1 0 | 
						
							| 5 | 4 | eqcomi | ⊢ ; 1 0  =  ( 9  +  1 ) | 
						
							| 6 | 5 | oveq1i | ⊢ ( ; 1 0  ·  𝐴 )  =  ( ( 9  +  1 )  ·  𝐴 ) | 
						
							| 7 |  | 9cn | ⊢ 9  ∈  ℂ | 
						
							| 8 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 9 | 1 | nn0cni | ⊢ 𝐴  ∈  ℂ | 
						
							| 10 | 7 8 9 | adddiri | ⊢ ( ( 9  +  1 )  ·  𝐴 )  =  ( ( 9  ·  𝐴 )  +  ( 1  ·  𝐴 ) ) | 
						
							| 11 | 9 | mullidi | ⊢ ( 1  ·  𝐴 )  =  𝐴 | 
						
							| 12 | 11 | oveq2i | ⊢ ( ( 9  ·  𝐴 )  +  ( 1  ·  𝐴 ) )  =  ( ( 9  ·  𝐴 )  +  𝐴 ) | 
						
							| 13 | 6 10 12 | 3eqtri | ⊢ ( ; 1 0  ·  𝐴 )  =  ( ( 9  ·  𝐴 )  +  𝐴 ) | 
						
							| 14 | 13 | oveq1i | ⊢ ( ( ; 1 0  ·  𝐴 )  +  𝐵 )  =  ( ( ( 9  ·  𝐴 )  +  𝐴 )  +  𝐵 ) | 
						
							| 15 | 7 9 | mulcli | ⊢ ( 9  ·  𝐴 )  ∈  ℂ | 
						
							| 16 | 2 | nn0cni | ⊢ 𝐵  ∈  ℂ | 
						
							| 17 | 15 9 16 | addassi | ⊢ ( ( ( 9  ·  𝐴 )  +  𝐴 )  +  𝐵 )  =  ( ( 9  ·  𝐴 )  +  ( 𝐴  +  𝐵 ) ) | 
						
							| 18 | 3 14 17 | 3eqtri | ⊢ ; 𝐴 𝐵  =  ( ( 9  ·  𝐴 )  +  ( 𝐴  +  𝐵 ) ) | 
						
							| 19 | 18 | breq2i | ⊢ ( 3  ∥  ; 𝐴 𝐵  ↔  3  ∥  ( ( 9  ·  𝐴 )  +  ( 𝐴  +  𝐵 ) ) ) | 
						
							| 20 |  | 3z | ⊢ 3  ∈  ℤ | 
						
							| 21 | 1 | nn0zi | ⊢ 𝐴  ∈  ℤ | 
						
							| 22 | 2 | nn0zi | ⊢ 𝐵  ∈  ℤ | 
						
							| 23 |  | zaddcl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( 𝐴  +  𝐵 )  ∈  ℤ ) | 
						
							| 24 | 21 22 23 | mp2an | ⊢ ( 𝐴  +  𝐵 )  ∈  ℤ | 
						
							| 25 |  | 9nn | ⊢ 9  ∈  ℕ | 
						
							| 26 | 25 | nnzi | ⊢ 9  ∈  ℤ | 
						
							| 27 |  | zmulcl | ⊢ ( ( 9  ∈  ℤ  ∧  𝐴  ∈  ℤ )  →  ( 9  ·  𝐴 )  ∈  ℤ ) | 
						
							| 28 | 26 21 27 | mp2an | ⊢ ( 9  ·  𝐴 )  ∈  ℤ | 
						
							| 29 |  | zmulcl | ⊢ ( ( 3  ∈  ℤ  ∧  𝐴  ∈  ℤ )  →  ( 3  ·  𝐴 )  ∈  ℤ ) | 
						
							| 30 | 20 21 29 | mp2an | ⊢ ( 3  ·  𝐴 )  ∈  ℤ | 
						
							| 31 |  | dvdsmul1 | ⊢ ( ( 3  ∈  ℤ  ∧  ( 3  ·  𝐴 )  ∈  ℤ )  →  3  ∥  ( 3  ·  ( 3  ·  𝐴 ) ) ) | 
						
							| 32 | 20 30 31 | mp2an | ⊢ 3  ∥  ( 3  ·  ( 3  ·  𝐴 ) ) | 
						
							| 33 |  | 3t3e9 | ⊢ ( 3  ·  3 )  =  9 | 
						
							| 34 | 33 | eqcomi | ⊢ 9  =  ( 3  ·  3 ) | 
						
							| 35 | 34 | oveq1i | ⊢ ( 9  ·  𝐴 )  =  ( ( 3  ·  3 )  ·  𝐴 ) | 
						
							| 36 |  | 3cn | ⊢ 3  ∈  ℂ | 
						
							| 37 | 36 36 9 | mulassi | ⊢ ( ( 3  ·  3 )  ·  𝐴 )  =  ( 3  ·  ( 3  ·  𝐴 ) ) | 
						
							| 38 | 35 37 | eqtri | ⊢ ( 9  ·  𝐴 )  =  ( 3  ·  ( 3  ·  𝐴 ) ) | 
						
							| 39 | 32 38 | breqtrri | ⊢ 3  ∥  ( 9  ·  𝐴 ) | 
						
							| 40 | 28 39 | pm3.2i | ⊢ ( ( 9  ·  𝐴 )  ∈  ℤ  ∧  3  ∥  ( 9  ·  𝐴 ) ) | 
						
							| 41 |  | dvdsadd2b | ⊢ ( ( 3  ∈  ℤ  ∧  ( 𝐴  +  𝐵 )  ∈  ℤ  ∧  ( ( 9  ·  𝐴 )  ∈  ℤ  ∧  3  ∥  ( 9  ·  𝐴 ) ) )  →  ( 3  ∥  ( 𝐴  +  𝐵 )  ↔  3  ∥  ( ( 9  ·  𝐴 )  +  ( 𝐴  +  𝐵 ) ) ) ) | 
						
							| 42 | 20 24 40 41 | mp3an | ⊢ ( 3  ∥  ( 𝐴  +  𝐵 )  ↔  3  ∥  ( ( 9  ·  𝐴 )  +  ( 𝐴  +  𝐵 ) ) ) | 
						
							| 43 | 19 42 | bitr4i | ⊢ ( 3  ∥  ; 𝐴 𝐵  ↔  3  ∥  ( 𝐴  +  𝐵 ) ) |