| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3dvdsdec.a |  |-  A e. NN0 | 
						
							| 2 |  | 3dvdsdec.b |  |-  B e. NN0 | 
						
							| 3 |  | dfdec10 |  |-  ; A B = ( ( ; 1 0 x. A ) + B ) | 
						
							| 4 |  | 9p1e10 |  |-  ( 9 + 1 ) = ; 1 0 | 
						
							| 5 | 4 | eqcomi |  |-  ; 1 0 = ( 9 + 1 ) | 
						
							| 6 | 5 | oveq1i |  |-  ( ; 1 0 x. A ) = ( ( 9 + 1 ) x. A ) | 
						
							| 7 |  | 9cn |  |-  9 e. CC | 
						
							| 8 |  | ax-1cn |  |-  1 e. CC | 
						
							| 9 | 1 | nn0cni |  |-  A e. CC | 
						
							| 10 | 7 8 9 | adddiri |  |-  ( ( 9 + 1 ) x. A ) = ( ( 9 x. A ) + ( 1 x. A ) ) | 
						
							| 11 | 9 | mullidi |  |-  ( 1 x. A ) = A | 
						
							| 12 | 11 | oveq2i |  |-  ( ( 9 x. A ) + ( 1 x. A ) ) = ( ( 9 x. A ) + A ) | 
						
							| 13 | 6 10 12 | 3eqtri |  |-  ( ; 1 0 x. A ) = ( ( 9 x. A ) + A ) | 
						
							| 14 | 13 | oveq1i |  |-  ( ( ; 1 0 x. A ) + B ) = ( ( ( 9 x. A ) + A ) + B ) | 
						
							| 15 | 7 9 | mulcli |  |-  ( 9 x. A ) e. CC | 
						
							| 16 | 2 | nn0cni |  |-  B e. CC | 
						
							| 17 | 15 9 16 | addassi |  |-  ( ( ( 9 x. A ) + A ) + B ) = ( ( 9 x. A ) + ( A + B ) ) | 
						
							| 18 | 3 14 17 | 3eqtri |  |-  ; A B = ( ( 9 x. A ) + ( A + B ) ) | 
						
							| 19 | 18 | breq2i |  |-  ( 3 || ; A B <-> 3 || ( ( 9 x. A ) + ( A + B ) ) ) | 
						
							| 20 |  | 3z |  |-  3 e. ZZ | 
						
							| 21 | 1 | nn0zi |  |-  A e. ZZ | 
						
							| 22 | 2 | nn0zi |  |-  B e. ZZ | 
						
							| 23 |  | zaddcl |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( A + B ) e. ZZ ) | 
						
							| 24 | 21 22 23 | mp2an |  |-  ( A + B ) e. ZZ | 
						
							| 25 |  | 9nn |  |-  9 e. NN | 
						
							| 26 | 25 | nnzi |  |-  9 e. ZZ | 
						
							| 27 |  | zmulcl |  |-  ( ( 9 e. ZZ /\ A e. ZZ ) -> ( 9 x. A ) e. ZZ ) | 
						
							| 28 | 26 21 27 | mp2an |  |-  ( 9 x. A ) e. ZZ | 
						
							| 29 |  | zmulcl |  |-  ( ( 3 e. ZZ /\ A e. ZZ ) -> ( 3 x. A ) e. ZZ ) | 
						
							| 30 | 20 21 29 | mp2an |  |-  ( 3 x. A ) e. ZZ | 
						
							| 31 |  | dvdsmul1 |  |-  ( ( 3 e. ZZ /\ ( 3 x. A ) e. ZZ ) -> 3 || ( 3 x. ( 3 x. A ) ) ) | 
						
							| 32 | 20 30 31 | mp2an |  |-  3 || ( 3 x. ( 3 x. A ) ) | 
						
							| 33 |  | 3t3e9 |  |-  ( 3 x. 3 ) = 9 | 
						
							| 34 | 33 | eqcomi |  |-  9 = ( 3 x. 3 ) | 
						
							| 35 | 34 | oveq1i |  |-  ( 9 x. A ) = ( ( 3 x. 3 ) x. A ) | 
						
							| 36 |  | 3cn |  |-  3 e. CC | 
						
							| 37 | 36 36 9 | mulassi |  |-  ( ( 3 x. 3 ) x. A ) = ( 3 x. ( 3 x. A ) ) | 
						
							| 38 | 35 37 | eqtri |  |-  ( 9 x. A ) = ( 3 x. ( 3 x. A ) ) | 
						
							| 39 | 32 38 | breqtrri |  |-  3 || ( 9 x. A ) | 
						
							| 40 | 28 39 | pm3.2i |  |-  ( ( 9 x. A ) e. ZZ /\ 3 || ( 9 x. A ) ) | 
						
							| 41 |  | dvdsadd2b |  |-  ( ( 3 e. ZZ /\ ( A + B ) e. ZZ /\ ( ( 9 x. A ) e. ZZ /\ 3 || ( 9 x. A ) ) ) -> ( 3 || ( A + B ) <-> 3 || ( ( 9 x. A ) + ( A + B ) ) ) ) | 
						
							| 42 | 20 24 40 41 | mp3an |  |-  ( 3 || ( A + B ) <-> 3 || ( ( 9 x. A ) + ( A + B ) ) ) | 
						
							| 43 | 19 42 | bitr4i |  |-  ( 3 || ; A B <-> 3 || ( A + B ) ) |