| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3dvdsdec.a |
|- A e. NN0 |
| 2 |
|
3dvdsdec.b |
|- B e. NN0 |
| 3 |
|
3dvds2dec.c |
|- C e. NN0 |
| 4 |
1 2
|
3dec |
|- ; ; A B C = ( ( ( ( ; 1 0 ^ 2 ) x. A ) + ( ; 1 0 x. B ) ) + C ) |
| 5 |
|
sq10e99m1 |
|- ( ; 1 0 ^ 2 ) = ( ; 9 9 + 1 ) |
| 6 |
5
|
oveq1i |
|- ( ( ; 1 0 ^ 2 ) x. A ) = ( ( ; 9 9 + 1 ) x. A ) |
| 7 |
|
9nn0 |
|- 9 e. NN0 |
| 8 |
7 7
|
deccl |
|- ; 9 9 e. NN0 |
| 9 |
8
|
nn0cni |
|- ; 9 9 e. CC |
| 10 |
|
ax-1cn |
|- 1 e. CC |
| 11 |
1
|
nn0cni |
|- A e. CC |
| 12 |
9 10 11
|
adddiri |
|- ( ( ; 9 9 + 1 ) x. A ) = ( ( ; 9 9 x. A ) + ( 1 x. A ) ) |
| 13 |
11
|
mullidi |
|- ( 1 x. A ) = A |
| 14 |
13
|
oveq2i |
|- ( ( ; 9 9 x. A ) + ( 1 x. A ) ) = ( ( ; 9 9 x. A ) + A ) |
| 15 |
6 12 14
|
3eqtri |
|- ( ( ; 1 0 ^ 2 ) x. A ) = ( ( ; 9 9 x. A ) + A ) |
| 16 |
|
9p1e10 |
|- ( 9 + 1 ) = ; 1 0 |
| 17 |
16
|
eqcomi |
|- ; 1 0 = ( 9 + 1 ) |
| 18 |
17
|
oveq1i |
|- ( ; 1 0 x. B ) = ( ( 9 + 1 ) x. B ) |
| 19 |
|
9cn |
|- 9 e. CC |
| 20 |
2
|
nn0cni |
|- B e. CC |
| 21 |
19 10 20
|
adddiri |
|- ( ( 9 + 1 ) x. B ) = ( ( 9 x. B ) + ( 1 x. B ) ) |
| 22 |
20
|
mullidi |
|- ( 1 x. B ) = B |
| 23 |
22
|
oveq2i |
|- ( ( 9 x. B ) + ( 1 x. B ) ) = ( ( 9 x. B ) + B ) |
| 24 |
18 21 23
|
3eqtri |
|- ( ; 1 0 x. B ) = ( ( 9 x. B ) + B ) |
| 25 |
15 24
|
oveq12i |
|- ( ( ( ; 1 0 ^ 2 ) x. A ) + ( ; 1 0 x. B ) ) = ( ( ( ; 9 9 x. A ) + A ) + ( ( 9 x. B ) + B ) ) |
| 26 |
25
|
oveq1i |
|- ( ( ( ( ; 1 0 ^ 2 ) x. A ) + ( ; 1 0 x. B ) ) + C ) = ( ( ( ( ; 9 9 x. A ) + A ) + ( ( 9 x. B ) + B ) ) + C ) |
| 27 |
9 11
|
mulcli |
|- ( ; 9 9 x. A ) e. CC |
| 28 |
19 20
|
mulcli |
|- ( 9 x. B ) e. CC |
| 29 |
|
add4 |
|- ( ( ( ( ; 9 9 x. A ) e. CC /\ A e. CC ) /\ ( ( 9 x. B ) e. CC /\ B e. CC ) ) -> ( ( ( ; 9 9 x. A ) + A ) + ( ( 9 x. B ) + B ) ) = ( ( ( ; 9 9 x. A ) + ( 9 x. B ) ) + ( A + B ) ) ) |
| 30 |
29
|
oveq1d |
|- ( ( ( ( ; 9 9 x. A ) e. CC /\ A e. CC ) /\ ( ( 9 x. B ) e. CC /\ B e. CC ) ) -> ( ( ( ( ; 9 9 x. A ) + A ) + ( ( 9 x. B ) + B ) ) + C ) = ( ( ( ( ; 9 9 x. A ) + ( 9 x. B ) ) + ( A + B ) ) + C ) ) |
| 31 |
27 11 28 20 30
|
mp4an |
|- ( ( ( ( ; 9 9 x. A ) + A ) + ( ( 9 x. B ) + B ) ) + C ) = ( ( ( ( ; 9 9 x. A ) + ( 9 x. B ) ) + ( A + B ) ) + C ) |
| 32 |
27 28
|
addcli |
|- ( ( ; 9 9 x. A ) + ( 9 x. B ) ) e. CC |
| 33 |
11 20
|
addcli |
|- ( A + B ) e. CC |
| 34 |
3
|
nn0cni |
|- C e. CC |
| 35 |
32 33 34
|
addassi |
|- ( ( ( ( ; 9 9 x. A ) + ( 9 x. B ) ) + ( A + B ) ) + C ) = ( ( ( ; 9 9 x. A ) + ( 9 x. B ) ) + ( ( A + B ) + C ) ) |
| 36 |
|
9t11e99 |
|- ( 9 x. ; 1 1 ) = ; 9 9 |
| 37 |
36
|
eqcomi |
|- ; 9 9 = ( 9 x. ; 1 1 ) |
| 38 |
37
|
oveq1i |
|- ( ; 9 9 x. A ) = ( ( 9 x. ; 1 1 ) x. A ) |
| 39 |
|
1nn0 |
|- 1 e. NN0 |
| 40 |
39 39
|
deccl |
|- ; 1 1 e. NN0 |
| 41 |
40
|
nn0cni |
|- ; 1 1 e. CC |
| 42 |
19 41 11
|
mulassi |
|- ( ( 9 x. ; 1 1 ) x. A ) = ( 9 x. ( ; 1 1 x. A ) ) |
| 43 |
38 42
|
eqtri |
|- ( ; 9 9 x. A ) = ( 9 x. ( ; 1 1 x. A ) ) |
| 44 |
43
|
oveq1i |
|- ( ( ; 9 9 x. A ) + ( 9 x. B ) ) = ( ( 9 x. ( ; 1 1 x. A ) ) + ( 9 x. B ) ) |
| 45 |
41 11
|
mulcli |
|- ( ; 1 1 x. A ) e. CC |
| 46 |
19 45 20
|
adddii |
|- ( 9 x. ( ( ; 1 1 x. A ) + B ) ) = ( ( 9 x. ( ; 1 1 x. A ) ) + ( 9 x. B ) ) |
| 47 |
46
|
eqcomi |
|- ( ( 9 x. ( ; 1 1 x. A ) ) + ( 9 x. B ) ) = ( 9 x. ( ( ; 1 1 x. A ) + B ) ) |
| 48 |
|
3t3e9 |
|- ( 3 x. 3 ) = 9 |
| 49 |
48
|
eqcomi |
|- 9 = ( 3 x. 3 ) |
| 50 |
49
|
oveq1i |
|- ( 9 x. ( ( ; 1 1 x. A ) + B ) ) = ( ( 3 x. 3 ) x. ( ( ; 1 1 x. A ) + B ) ) |
| 51 |
|
3cn |
|- 3 e. CC |
| 52 |
45 20
|
addcli |
|- ( ( ; 1 1 x. A ) + B ) e. CC |
| 53 |
51 51 52
|
mulassi |
|- ( ( 3 x. 3 ) x. ( ( ; 1 1 x. A ) + B ) ) = ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) |
| 54 |
50 53
|
eqtri |
|- ( 9 x. ( ( ; 1 1 x. A ) + B ) ) = ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) |
| 55 |
44 47 54
|
3eqtri |
|- ( ( ; 9 9 x. A ) + ( 9 x. B ) ) = ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) |
| 56 |
55
|
oveq1i |
|- ( ( ( ; 9 9 x. A ) + ( 9 x. B ) ) + ( ( A + B ) + C ) ) = ( ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) + ( ( A + B ) + C ) ) |
| 57 |
31 35 56
|
3eqtri |
|- ( ( ( ( ; 9 9 x. A ) + A ) + ( ( 9 x. B ) + B ) ) + C ) = ( ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) + ( ( A + B ) + C ) ) |
| 58 |
4 26 57
|
3eqtri |
|- ; ; A B C = ( ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) + ( ( A + B ) + C ) ) |
| 59 |
58
|
breq2i |
|- ( 3 || ; ; A B C <-> 3 || ( ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) + ( ( A + B ) + C ) ) ) |
| 60 |
|
3z |
|- 3 e. ZZ |
| 61 |
1
|
nn0zi |
|- A e. ZZ |
| 62 |
2
|
nn0zi |
|- B e. ZZ |
| 63 |
|
zaddcl |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A + B ) e. ZZ ) |
| 64 |
61 62 63
|
mp2an |
|- ( A + B ) e. ZZ |
| 65 |
3
|
nn0zi |
|- C e. ZZ |
| 66 |
|
zaddcl |
|- ( ( ( A + B ) e. ZZ /\ C e. ZZ ) -> ( ( A + B ) + C ) e. ZZ ) |
| 67 |
64 65 66
|
mp2an |
|- ( ( A + B ) + C ) e. ZZ |
| 68 |
40
|
nn0zi |
|- ; 1 1 e. ZZ |
| 69 |
|
zmulcl |
|- ( ( ; 1 1 e. ZZ /\ A e. ZZ ) -> ( ; 1 1 x. A ) e. ZZ ) |
| 70 |
68 61 69
|
mp2an |
|- ( ; 1 1 x. A ) e. ZZ |
| 71 |
|
zaddcl |
|- ( ( ( ; 1 1 x. A ) e. ZZ /\ B e. ZZ ) -> ( ( ; 1 1 x. A ) + B ) e. ZZ ) |
| 72 |
70 62 71
|
mp2an |
|- ( ( ; 1 1 x. A ) + B ) e. ZZ |
| 73 |
|
zmulcl |
|- ( ( 3 e. ZZ /\ ( ( ; 1 1 x. A ) + B ) e. ZZ ) -> ( 3 x. ( ( ; 1 1 x. A ) + B ) ) e. ZZ ) |
| 74 |
60 72 73
|
mp2an |
|- ( 3 x. ( ( ; 1 1 x. A ) + B ) ) e. ZZ |
| 75 |
|
zmulcl |
|- ( ( 3 e. ZZ /\ ( 3 x. ( ( ; 1 1 x. A ) + B ) ) e. ZZ ) -> ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) e. ZZ ) |
| 76 |
60 74 75
|
mp2an |
|- ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) e. ZZ |
| 77 |
|
dvdsmul1 |
|- ( ( 3 e. ZZ /\ ( 3 x. ( ( ; 1 1 x. A ) + B ) ) e. ZZ ) -> 3 || ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) ) |
| 78 |
60 74 77
|
mp2an |
|- 3 || ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) |
| 79 |
76 78
|
pm3.2i |
|- ( ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) e. ZZ /\ 3 || ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) ) |
| 80 |
|
dvdsadd2b |
|- ( ( 3 e. ZZ /\ ( ( A + B ) + C ) e. ZZ /\ ( ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) e. ZZ /\ 3 || ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) ) ) -> ( 3 || ( ( A + B ) + C ) <-> 3 || ( ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) + ( ( A + B ) + C ) ) ) ) |
| 81 |
60 67 79 80
|
mp3an |
|- ( 3 || ( ( A + B ) + C ) <-> 3 || ( ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) + ( ( A + B ) + C ) ) ) |
| 82 |
59 81
|
bitr4i |
|- ( 3 || ; ; A B C <-> 3 || ( ( A + B ) + C ) ) |