Description: A decimal number is divisible by three iff the sum of its three "digits" is divisible by three. The term "digits" in its narrow sense is only correct if A , B and C actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers A , B and C . (Contributed by AV, 14-Jun-2021) (Revised by AV, 1-Aug-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 3dvdsdec.a | |
|
3dvdsdec.b | |
||
3dvds2dec.c | |
||
Assertion | 3dvds2dec | Could not format assertion : No typesetting found for |- ( 3 || ; ; A B C <-> 3 || ( ( A + B ) + C ) ) with typecode |- |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3dvdsdec.a | |
|
2 | 3dvdsdec.b | |
|
3 | 3dvds2dec.c | |
|
4 | 1 2 | 3dec | Could not format ; ; A B C = ( ( ( ( ; 1 0 ^ 2 ) x. A ) + ( ; 1 0 x. B ) ) + C ) : No typesetting found for |- ; ; A B C = ( ( ( ( ; 1 0 ^ 2 ) x. A ) + ( ; 1 0 x. B ) ) + C ) with typecode |- |
5 | sq10e99m1 | |
|
6 | 5 | oveq1i | |
7 | 9nn0 | |
|
8 | 7 7 | deccl | |
9 | 8 | nn0cni | |
10 | ax-1cn | |
|
11 | 1 | nn0cni | |
12 | 9 10 11 | adddiri | |
13 | 11 | mullidi | |
14 | 13 | oveq2i | |
15 | 6 12 14 | 3eqtri | |
16 | 9p1e10 | |
|
17 | 16 | eqcomi | |
18 | 17 | oveq1i | |
19 | 9cn | |
|
20 | 2 | nn0cni | |
21 | 19 10 20 | adddiri | |
22 | 20 | mullidi | |
23 | 22 | oveq2i | |
24 | 18 21 23 | 3eqtri | |
25 | 15 24 | oveq12i | |
26 | 25 | oveq1i | |
27 | 9 11 | mulcli | |
28 | 19 20 | mulcli | |
29 | add4 | |
|
30 | 29 | oveq1d | |
31 | 27 11 28 20 30 | mp4an | |
32 | 27 28 | addcli | |
33 | 11 20 | addcli | |
34 | 3 | nn0cni | |
35 | 32 33 34 | addassi | |
36 | 9t11e99 | |
|
37 | 36 | eqcomi | |
38 | 37 | oveq1i | |
39 | 1nn0 | |
|
40 | 39 39 | deccl | |
41 | 40 | nn0cni | |
42 | 19 41 11 | mulassi | |
43 | 38 42 | eqtri | |
44 | 43 | oveq1i | |
45 | 41 11 | mulcli | |
46 | 19 45 20 | adddii | |
47 | 46 | eqcomi | |
48 | 3t3e9 | |
|
49 | 48 | eqcomi | |
50 | 49 | oveq1i | |
51 | 3cn | |
|
52 | 45 20 | addcli | |
53 | 51 51 52 | mulassi | |
54 | 50 53 | eqtri | |
55 | 44 47 54 | 3eqtri | |
56 | 55 | oveq1i | |
57 | 31 35 56 | 3eqtri | |
58 | 4 26 57 | 3eqtri | Could not format ; ; A B C = ( ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) + ( ( A + B ) + C ) ) : No typesetting found for |- ; ; A B C = ( ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) + ( ( A + B ) + C ) ) with typecode |- |
59 | 58 | breq2i | Could not format ( 3 || ; ; A B C <-> 3 || ( ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) + ( ( A + B ) + C ) ) ) : No typesetting found for |- ( 3 || ; ; A B C <-> 3 || ( ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) + ( ( A + B ) + C ) ) ) with typecode |- |
60 | 3z | |
|
61 | 1 | nn0zi | |
62 | 2 | nn0zi | |
63 | zaddcl | |
|
64 | 61 62 63 | mp2an | |
65 | 3 | nn0zi | |
66 | zaddcl | |
|
67 | 64 65 66 | mp2an | |
68 | 40 | nn0zi | |
69 | zmulcl | |
|
70 | 68 61 69 | mp2an | |
71 | zaddcl | |
|
72 | 70 62 71 | mp2an | |
73 | zmulcl | |
|
74 | 60 72 73 | mp2an | |
75 | zmulcl | |
|
76 | 60 74 75 | mp2an | |
77 | dvdsmul1 | |
|
78 | 60 74 77 | mp2an | |
79 | 76 78 | pm3.2i | |
80 | dvdsadd2b | |
|
81 | 60 67 79 80 | mp3an | |
82 | 59 81 | bitr4i | Could not format ( 3 || ; ; A B C <-> 3 || ( ( A + B ) + C ) ) : No typesetting found for |- ( 3 || ; ; A B C <-> 3 || ( ( A + B ) + C ) ) with typecode |- |