Metamath Proof Explorer


Theorem prmlem2

Description: Our last proving session got as far as 25 because we started with the two "bootstrap" primes 2 and 3, and the next prime is 5, so knowing that 2 and 3 are prime and 4 is not allows to cover the numbers less than 5 ^ 2 = 2 5 . Additionally, nonprimes are "easy", so we can extend this range of known prime/nonprimes all the way until 29, which is the first prime larger than 25. Thus, in this lemma we extend another blanket out to 2 9 ^ 2 = 8 4 1 , from which we can prove even more primes. If we wanted, we could keep doing this, but the goal is Bertrand's postulate, and for that we only need a few large primes - we don't need to find them all, as we have been doing thus far. So after this blanket runs out, we'll have to switch to another method (see 1259prm ).

As a side note, you can see the pattern of the primes in the indentation pattern of this lemma! (Contributed by Mario Carneiro, 18-Feb-2014) (Proof shortened by Mario Carneiro, 20-Apr-2015)

Ref Expression
Hypotheses prmlem2.n N
prmlem2.lt N<841
prmlem2.gt 1<N
prmlem2.2 ¬2N
prmlem2.3 ¬3N
prmlem2.5 ¬5N
prmlem2.7 ¬7N
prmlem2.11 ¬11N
prmlem2.13 ¬13N
prmlem2.17 ¬17N
prmlem2.19 ¬19N
prmlem2.23 ¬23N
Assertion prmlem2 N

Proof

Step Hyp Ref Expression
1 prmlem2.n N
2 prmlem2.lt N<841
3 prmlem2.gt 1<N
4 prmlem2.2 ¬2N
5 prmlem2.3 ¬3N
6 prmlem2.5 ¬5N
7 prmlem2.7 ¬7N
8 prmlem2.11 ¬11N
9 prmlem2.13 ¬13N
10 prmlem2.17 ¬17N
11 prmlem2.19 ¬19N
12 prmlem2.23 ¬23N
13 eluzelre x29x
14 13 resqcld x29x2
15 eluzle x2929x
16 2nn0 20
17 9nn0 90
18 16 17 deccl 290
19 18 nn0rei 29
20 18 nn0ge0i 029
21 le2sq2 29029x29x292x2
22 19 20 21 mpanl12 x29x292x2
23 13 15 22 syl2anc x29292x2
24 1 nnrei N
25 19 resqcli 292
26 18 nn0cni 29
27 26 sqvali 292=2929
28 eqid 29=29
29 1nn0 10
30 6nn0 60
31 16 30 deccl 260
32 5nn0 50
33 8nn0 80
34 26 2timesi 229=29+29
35 2p2e4 2+2=4
36 35 oveq1i 2+2+1=4+1
37 4p1e5 4+1=5
38 36 37 eqtri 2+2+1=5
39 9p9e18 9+9=18
40 16 17 16 17 28 28 38 33 39 decaddc 29+29=58
41 34 40 eqtri 229=58
42 eqid 26=26
43 5p2e7 5+2=7
44 43 oveq1i 5+2+1=7+1
45 7p1e8 7+1=8
46 44 45 eqtri 5+2+1=8
47 4nn0 40
48 8p6e14 8+6=14
49 32 33 16 30 41 42 46 47 48 decaddc 229+26=84
50 9t2e18 92=18
51 1p1e2 1+1=2
52 8p8e16 8+8=16
53 29 33 33 50 51 30 52 decaddci 92+8=26
54 9t9e81 99=81
55 17 16 17 28 29 33 53 54 decmul2c 929=261
56 18 16 17 28 29 31 49 55 decmul1c 2929=841
57 27 56 eqtri 292=841
58 2 57 breqtrri N<292
59 ltletr N292x2N<292292x2N<x2
60 58 59 mpani N292x2292x2N<x2
61 24 25 60 mp3an12 x2292x2N<x2
62 14 23 61 sylc x29N<x2
63 ltnle Nx2N<x2¬x2N
64 24 14 63 sylancr x29N<x2¬x2N
65 62 64 mpbid x29¬x2N
66 65 pm2.21d x29x2N¬xN
67 66 adantld x29x2x2N¬xN
68 67 adantl ¬229x29x2x2N¬xN
69 9nn 9
70 3nn 3
71 1lt9 1<9
72 1lt3 1<3
73 9t3e27 93=27
74 69 70 71 72 73 nprmi ¬27
75 74 pm2.21i 27¬27N
76 7nn0 70
77 eqid 27=27
78 7p2e9 7+2=9
79 16 76 16 77 78 decaddi 27+2=29
80 68 75 79 prmlem0 ¬227x27x2x2N¬xN
81 5nn 5
82 1lt5 1<5
83 5t5e25 55=25
84 81 81 82 82 83 nprmi ¬25
85 84 pm2.21i 25¬25N
86 eqid 25=25
87 16 32 16 86 43 decaddi 25+2=27
88 80 85 87 prmlem0 ¬225x25x2x2N¬xN
89 12 a1i 23¬23N
90 3nn0 30
91 eqid 23=23
92 3p2e5 3+2=5
93 16 90 16 91 92 decaddi 23+2=25
94 88 89 93 prmlem0 ¬223x23x2x2N¬xN
95 7nn 7
96 1lt7 1<7
97 7t3e21 73=21
98 95 70 96 72 97 nprmi ¬21
99 98 pm2.21i 21¬21N
100 eqid 21=21
101 1p2e3 1+2=3
102 16 29 16 100 101 decaddi 21+2=23
103 94 99 102 prmlem0 ¬221x21x2x2N¬xN
104 11 a1i 19¬19N
105 eqid 19=19
106 9p2e11 9+2=11
107 29 17 16 105 51 29 106 decaddci 19+2=21
108 103 104 107 prmlem0 ¬219x19x2x2N¬xN
109 10 a1i 17¬17N
110 eqid 17=17
111 29 76 16 110 78 decaddi 17+2=19
112 108 109 111 prmlem0 ¬217x17x2x2N¬xN
113 5t3e15 53=15
114 81 70 82 72 113 nprmi ¬15
115 114 pm2.21i 15¬15N
116 eqid 15=15
117 29 32 16 116 43 decaddi 15+2=17
118 112 115 117 prmlem0 ¬215x15x2x2N¬xN
119 9 a1i 13¬13N
120 eqid 13=13
121 29 90 16 120 92 decaddi 13+2=15
122 118 119 121 prmlem0 ¬213x13x2x2N¬xN
123 8 a1i 11¬11N
124 eqid 11=11
125 29 29 16 124 101 decaddi 11+2=13
126 122 123 125 prmlem0 ¬211x11x2x2N¬xN
127 9nprm ¬9
128 127 pm2.21i 9¬9N
129 126 128 106 prmlem0 ¬29x9x2x2N¬xN
130 7 a1i 7¬7N
131 129 130 78 prmlem0 ¬27x7x2x2N¬xN
132 6 a1i 5¬5N
133 131 132 43 prmlem0 ¬25x5x2x2N¬xN
134 1 3 4 5 133 prmlem1a N