Metamath Proof Explorer


Theorem prmlem1a

Description: A quick proof skeleton to show that the numbers less than 25 are prime, by trial division. (Contributed by Mario Carneiro, 18-Feb-2014)

Ref Expression
Hypotheses prmlem1.n N
prmlem1.gt 1 < N
prmlem1.2 ¬ 2 N
prmlem1.3 ¬ 3 N
prmlem1a.x ¬ 2 5 x 5 x 2 x 2 N ¬ x N
Assertion prmlem1a N

Proof

Step Hyp Ref Expression
1 prmlem1.n N
2 prmlem1.gt 1 < N
3 prmlem1.2 ¬ 2 N
4 prmlem1.3 ¬ 3 N
5 prmlem1a.x ¬ 2 5 x 5 x 2 x 2 N ¬ x N
6 eluz2b2 N 2 N 1 < N
7 1 2 6 mpbir2an N 2
8 breq1 x = 2 x N 2 N
9 8 notbid x = 2 ¬ x N ¬ 2 N
10 9 imbi2d x = 2 x 2 N ¬ x N x 2 N ¬ 2 N
11 prmnn x x
12 11 adantr x x 2 x
13 eldifsn x 2 x x 2
14 n2dvds1 ¬ 2 1
15 4 a1i 3 ¬ 3 N
16 3p2e5 3 + 2 = 5
17 5 15 16 prmlem0 ¬ 2 3 x 3 x 2 x 2 N ¬ x N
18 1nprm ¬ 1
19 18 pm2.21i 1 ¬ 1 N
20 1p2e3 1 + 2 = 3
21 17 19 20 prmlem0 ¬ 2 1 x 1 x 2 x 2 N ¬ x N
22 14 21 mpan x 1 x 2 x 2 N ¬ x N
23 nnuz = 1
24 22 23 eleq2s x x 2 x 2 N ¬ x N
25 24 expd x x 2 x 2 N ¬ x N
26 13 25 syl5bir x x x 2 x 2 N ¬ x N
27 12 26 mpcom x x 2 x 2 N ¬ x N
28 3 2a1i x x 2 N ¬ 2 N
29 10 27 28 pm2.61ne x x 2 N ¬ x N
30 29 rgen x x 2 N ¬ x N
31 isprm5 N N 2 x x 2 N ¬ x N
32 7 30 31 mpbir2an N