| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prmlem0.1 |
|
| 2 |
|
prmlem0.2 |
|
| 3 |
|
prmlem0.3 |
|
| 4 |
|
eldifi |
|
| 5 |
|
eleq1 |
|
| 6 |
|
breq1 |
|
| 7 |
6
|
notbid |
|
| 8 |
5 7
|
imbi12d |
|
| 9 |
2 8
|
mpbiri |
|
| 10 |
4 9
|
syl5 |
|
| 11 |
10
|
adantrd |
|
| 12 |
11
|
a1i |
|
| 13 |
|
uzp1 |
|
| 14 |
|
eleq1 |
|
| 15 |
14
|
adantl |
|
| 16 |
|
eldifsn |
|
| 17 |
|
eluzel2 |
|
| 18 |
17
|
adantl |
|
| 19 |
|
simpl |
|
| 20 |
|
1z |
|
| 21 |
|
n2dvds1 |
|
| 22 |
|
opoe |
|
| 23 |
20 21 22
|
mpanr12 |
|
| 24 |
18 19 23
|
syl2anc |
|
| 25 |
24
|
adantr |
|
| 26 |
|
2z |
|
| 27 |
|
uzid |
|
| 28 |
26 27
|
mp1i |
|
| 29 |
|
dvdsprm |
|
| 30 |
28 29
|
sylan |
|
| 31 |
25 30
|
mpbid |
|
| 32 |
31
|
eqcomd |
|
| 33 |
32
|
a1d |
|
| 34 |
33
|
necon3ad |
|
| 35 |
34
|
expimpd |
|
| 36 |
16 35
|
biimtrid |
|
| 37 |
36
|
adantr |
|
| 38 |
15 37
|
sylbid |
|
| 39 |
38
|
adantrd |
|
| 40 |
39
|
ex |
|
| 41 |
18
|
zcnd |
|
| 42 |
|
ax-1cn |
|
| 43 |
|
addass |
|
| 44 |
42 42 43
|
mp3an23 |
|
| 45 |
41 44
|
syl |
|
| 46 |
|
1p1e2 |
|
| 47 |
46
|
oveq2i |
|
| 48 |
47 3
|
eqtri |
|
| 49 |
45 48
|
eqtrdi |
|
| 50 |
49
|
fveq2d |
|
| 51 |
50
|
eleq2d |
|
| 52 |
|
dvdsaddr |
|
| 53 |
26 18 52
|
sylancr |
|
| 54 |
3
|
breq2i |
|
| 55 |
53 54
|
bitrdi |
|
| 56 |
19 55
|
mtbid |
|
| 57 |
1
|
ex |
|
| 58 |
56 57
|
syl |
|
| 59 |
51 58
|
sylbid |
|
| 60 |
40 59
|
jaod |
|
| 61 |
13 60
|
syl5 |
|
| 62 |
|
uzp1 |
|
| 63 |
62
|
adantl |
|
| 64 |
12 61 63
|
mpjaod |
|