Metamath Proof Explorer


Theorem prmlem0

Description: Lemma for prmlem1 and prmlem2 . (Contributed by Mario Carneiro, 18-Feb-2014)

Ref Expression
Hypotheses prmlem0.1 ¬ 2 M x M x 2 x 2 N ¬ x N
prmlem0.2 K ¬ K N
prmlem0.3 K + 2 = M
Assertion prmlem0 ¬ 2 K x K x 2 x 2 N ¬ x N

Proof

Step Hyp Ref Expression
1 prmlem0.1 ¬ 2 M x M x 2 x 2 N ¬ x N
2 prmlem0.2 K ¬ K N
3 prmlem0.3 K + 2 = M
4 eldifi x 2 x
5 eleq1 x = K x K
6 breq1 x = K x N K N
7 6 notbid x = K ¬ x N ¬ K N
8 5 7 imbi12d x = K x ¬ x N K ¬ K N
9 2 8 mpbiri x = K x ¬ x N
10 4 9 syl5 x = K x 2 ¬ x N
11 10 adantrd x = K x 2 x 2 N ¬ x N
12 11 a1i ¬ 2 K x K x = K x 2 x 2 N ¬ x N
13 uzp1 x K + 1 x = K + 1 x K + 1 + 1
14 eleq1 x = K + 1 x 2 K + 1 2
15 14 adantl ¬ 2 K x K x = K + 1 x 2 K + 1 2
16 eldifsn K + 1 2 K + 1 K + 1 2
17 eluzel2 x K K
18 17 adantl ¬ 2 K x K K
19 simpl ¬ 2 K x K ¬ 2 K
20 1z 1
21 n2dvds1 ¬ 2 1
22 opoe K ¬ 2 K 1 ¬ 2 1 2 K + 1
23 20 21 22 mpanr12 K ¬ 2 K 2 K + 1
24 18 19 23 syl2anc ¬ 2 K x K 2 K + 1
25 24 adantr ¬ 2 K x K K + 1 2 K + 1
26 2z 2
27 uzid 2 2 2
28 26 27 mp1i ¬ 2 K x K 2 2
29 dvdsprm 2 2 K + 1 2 K + 1 2 = K + 1
30 28 29 sylan ¬ 2 K x K K + 1 2 K + 1 2 = K + 1
31 25 30 mpbid ¬ 2 K x K K + 1 2 = K + 1
32 31 eqcomd ¬ 2 K x K K + 1 K + 1 = 2
33 32 a1d ¬ 2 K x K K + 1 x N K + 1 = 2
34 33 necon3ad ¬ 2 K x K K + 1 K + 1 2 ¬ x N
35 34 expimpd ¬ 2 K x K K + 1 K + 1 2 ¬ x N
36 16 35 syl5bi ¬ 2 K x K K + 1 2 ¬ x N
37 36 adantr ¬ 2 K x K x = K + 1 K + 1 2 ¬ x N
38 15 37 sylbid ¬ 2 K x K x = K + 1 x 2 ¬ x N
39 38 adantrd ¬ 2 K x K x = K + 1 x 2 x 2 N ¬ x N
40 39 ex ¬ 2 K x K x = K + 1 x 2 x 2 N ¬ x N
41 18 zcnd ¬ 2 K x K K
42 ax-1cn 1
43 addass K 1 1 K + 1 + 1 = K + 1 + 1
44 42 42 43 mp3an23 K K + 1 + 1 = K + 1 + 1
45 41 44 syl ¬ 2 K x K K + 1 + 1 = K + 1 + 1
46 1p1e2 1 + 1 = 2
47 46 oveq2i K + 1 + 1 = K + 2
48 47 3 eqtri K + 1 + 1 = M
49 45 48 eqtrdi ¬ 2 K x K K + 1 + 1 = M
50 49 fveq2d ¬ 2 K x K K + 1 + 1 = M
51 50 eleq2d ¬ 2 K x K x K + 1 + 1 x M
52 dvdsaddr 2 K 2 K 2 K + 2
53 26 18 52 sylancr ¬ 2 K x K 2 K 2 K + 2
54 3 breq2i 2 K + 2 2 M
55 53 54 bitrdi ¬ 2 K x K 2 K 2 M
56 19 55 mtbid ¬ 2 K x K ¬ 2 M
57 1 ex ¬ 2 M x M x 2 x 2 N ¬ x N
58 56 57 syl ¬ 2 K x K x M x 2 x 2 N ¬ x N
59 51 58 sylbid ¬ 2 K x K x K + 1 + 1 x 2 x 2 N ¬ x N
60 40 59 jaod ¬ 2 K x K x = K + 1 x K + 1 + 1 x 2 x 2 N ¬ x N
61 13 60 syl5 ¬ 2 K x K x K + 1 x 2 x 2 N ¬ x N
62 uzp1 x K x = K x K + 1
63 62 adantl ¬ 2 K x K x = K x K + 1
64 12 61 63 mpjaod ¬ 2 K x K x 2 x 2 N ¬ x N