Metamath Proof Explorer


Theorem 37prm

Description: 37 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014) (Proof shortened by Mario Carneiro, 20-Apr-2015)

Ref Expression
Assertion 37prm 37

Proof

Step Hyp Ref Expression
1 3nn0 30
2 7nn 7
3 1 2 decnncl 37
4 8nn0 80
5 4nn0 40
6 4 5 deccl 840
7 7nn0 70
8 1nn0 10
9 7lt10 7<10
10 8nn 8
11 3lt10 3<10
12 10 5 1 11 declti 3<84
13 1 6 7 8 9 12 decltc 37<841
14 3nn 3
15 1lt10 1<10
16 14 7 8 15 declti 1<37
17 3t2e6 32=6
18 df-7 7=6+1
19 1 1 17 18 dec2dvds ¬237
20 2nn0 20
21 8 20 deccl 120
22 1nn 1
23 6nn0 60
24 6p1e7 6+1=7
25 eqid 12=12
26 0nn0 00
27 3cn 3
28 27 mulridi 31=3
29 28 oveq1i 31+0=3+0
30 27 addridi 3+0=3
31 29 30 eqtri 31+0=3
32 23 dec0h 6=06
33 17 32 eqtri 32=06
34 1 8 20 25 23 26 31 33 decmul2c 312=36
35 1 23 24 34 decsuc 312+1=37
36 1lt3 1<3
37 14 21 22 35 36 ndvdsi ¬337
38 2nn 2
39 2lt5 2<5
40 5p2e7 5+2=7
41 1 38 39 40 dec5dvds2 ¬537
42 5nn0 50
43 7t5e35 75=35
44 1 42 20 43 40 decaddi 75+2=37
45 2lt7 2<7
46 2 42 38 44 45 ndvdsi ¬737
47 8 22 decnncl 11
48 4nn 4
49 eqid 11=11
50 27 mullidi 13=3
51 50 oveq1i 13+4=3+4
52 48 nncni 4
53 4p3e7 4+3=7
54 52 27 53 addcomli 3+4=7
55 51 54 eqtri 13+4=7
56 8 8 5 49 1 50 55 decrmanc 113+4=37
57 4lt10 4<10
58 22 8 5 57 declti 4<11
59 47 1 48 56 58 ndvdsi ¬1137
60 8 14 decnncl 13
61 eqid 13=13
62 2cn 2
63 62 mullidi 12=2
64 20 8 1 61 63 17 decmul1 132=26
65 2p1e3 2+1=3
66 20 23 8 8 64 49 65 24 decadd 132+11=37
67 8 8 14 36 declt 11<13
68 60 20 47 66 67 ndvdsi ¬1337
69 8 2 decnncl 17
70 eqid 17=17
71 1 dec0h 3=03
72 0p1e1 0+1=1
73 63 72 oveq12i 12+0+1=2+1
74 73 65 eqtri 12+0+1=3
75 7t2e14 72=14
76 8 5 1 75 53 decaddi 72+3=17
77 8 7 26 1 70 71 20 7 8 74 76 decmac 172+3=37
78 22 7 1 11 declti 3<17
79 69 20 14 77 78 ndvdsi ¬1737
80 9nn 9
81 8 80 decnncl 19
82 8 10 decnncl 18
83 9nn0 90
84 81 nncni 19
85 84 mulridi 191=19
86 eqid 18=18
87 1p1e2 1+1=2
88 87 oveq1i 1+1+1=2+1
89 88 65 eqtri 1+1+1=3
90 9p8e17 9+8=17
91 8 83 8 4 85 86 89 7 90 decaddc 191+18=37
92 8lt9 8<9
93 8 4 80 92 declt 18<19
94 81 8 82 91 93 ndvdsi ¬1937
95 20 14 decnncl 23
96 8 48 decnncl 14
97 95 nncni 23
98 97 mulridi 231=23
99 eqid 14=14
100 20 1 8 5 98 99 65 54 decadd 231+14=37
101 1lt2 1<2
102 8 20 5 1 57 101 decltc 14<23
103 95 8 96 100 102 ndvdsi ¬2337
104 3 13 16 19 37 41 46 59 68 79 94 103 prmlem2 37