Description: 1259 is a prime number. (Contributed by Mario Carneiro, 22-Feb-2014) (Proof shortened by Mario Carneiro, 20-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 1259prm.1 | ||
| Assertion | 1259prm |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1259prm.1 | ||
| 2 | 37prm | ||
| 3 | 3nn0 | ||
| 4 | 4nn | ||
| 5 | 3 4 | decnncl | |
| 6 | 1nn0 | ||
| 7 | 2nn0 | ||
| 8 | 6 7 | deccl | |
| 9 | 5nn0 | ||
| 10 | 8 9 | deccl | |
| 11 | 8nn0 | ||
| 12 | 10 11 | deccl | |
| 13 | 12 | nn0cni | |
| 14 | ax-1cn | ||
| 15 | eqid | ||
| 16 | 8p1e9 | ||
| 17 | 10 11 6 15 16 | decaddi | |
| 18 | 1 17 | eqtr4i | |
| 19 | 13 14 18 | mvrraddi | |
| 20 | 4nn0 | ||
| 21 | 3 20 | deccl | |
| 22 | 7nn0 | ||
| 23 | eqid | ||
| 24 | 7 3 | deccl | |
| 25 | eqid | ||
| 26 | eqid | ||
| 27 | 3t3e9 | ||
| 28 | 2p1e3 | ||
| 29 | 27 28 | oveq12i | |
| 30 | 9p3e12 | ||
| 31 | 29 30 | eqtri | |
| 32 | 4t3e12 | ||
| 33 | 3cn | ||
| 34 | 2cn | ||
| 35 | 3p2e5 | ||
| 36 | 33 34 35 | addcomli | |
| 37 | 6 7 3 32 36 | decaddi | |
| 38 | 3 20 7 3 25 26 3 9 6 31 37 | decmac | |
| 39 | 7cn | ||
| 40 | 7t3e21 | ||
| 41 | 39 33 40 | mulcomli | |
| 42 | 1p2e3 | ||
| 43 | 7 6 7 41 42 | decaddi | |
| 44 | 4cn | ||
| 45 | 7t4e28 | ||
| 46 | 39 44 45 | mulcomli | |
| 47 | 22 3 20 25 11 7 43 46 | decmul1c | |
| 48 | 21 3 22 23 11 24 38 47 | decmul2c | |
| 49 | 19 48 | eqtr4i | |
| 50 | 9nn0 | ||
| 51 | 10 50 | deccl | |
| 52 | 1 51 | eqeltri | |
| 53 | 52 | nn0cni | |
| 54 | npcan | ||
| 55 | 53 14 54 | mp2an | |
| 56 | 55 | eqcomi | |
| 57 | 1nn | ||
| 58 | 2nn | ||
| 59 | 3 22 | deccl | |
| 60 | 59 | numexp1 | |
| 61 | 60 | oveq2i | |
| 62 | 49 61 | eqtr4i | |
| 63 | 7nn | ||
| 64 | 4lt7 | ||
| 65 | 3 20 63 64 | declt | |
| 66 | 65 60 | breqtrri | |
| 67 | 1 | 1259lem4 | |
| 68 | 1 | 1259lem5 | |
| 69 | 2 5 49 56 5 57 58 62 66 67 68 | pockthi |