Step |
Hyp |
Ref |
Expression |
1 |
|
1259prm.1 |
|- N = ; ; ; 1 2 5 9 |
2 |
|
37prm |
|- ; 3 7 e. Prime |
3 |
|
3nn0 |
|- 3 e. NN0 |
4 |
|
4nn |
|- 4 e. NN |
5 |
3 4
|
decnncl |
|- ; 3 4 e. NN |
6 |
|
1nn0 |
|- 1 e. NN0 |
7 |
|
2nn0 |
|- 2 e. NN0 |
8 |
6 7
|
deccl |
|- ; 1 2 e. NN0 |
9 |
|
5nn0 |
|- 5 e. NN0 |
10 |
8 9
|
deccl |
|- ; ; 1 2 5 e. NN0 |
11 |
|
8nn0 |
|- 8 e. NN0 |
12 |
10 11
|
deccl |
|- ; ; ; 1 2 5 8 e. NN0 |
13 |
12
|
nn0cni |
|- ; ; ; 1 2 5 8 e. CC |
14 |
|
ax-1cn |
|- 1 e. CC |
15 |
|
eqid |
|- ; ; ; 1 2 5 8 = ; ; ; 1 2 5 8 |
16 |
|
8p1e9 |
|- ( 8 + 1 ) = 9 |
17 |
10 11 6 15 16
|
decaddi |
|- ( ; ; ; 1 2 5 8 + 1 ) = ; ; ; 1 2 5 9 |
18 |
1 17
|
eqtr4i |
|- N = ( ; ; ; 1 2 5 8 + 1 ) |
19 |
13 14 18
|
mvrraddi |
|- ( N - 1 ) = ; ; ; 1 2 5 8 |
20 |
|
4nn0 |
|- 4 e. NN0 |
21 |
3 20
|
deccl |
|- ; 3 4 e. NN0 |
22 |
|
7nn0 |
|- 7 e. NN0 |
23 |
|
eqid |
|- ; 3 7 = ; 3 7 |
24 |
7 3
|
deccl |
|- ; 2 3 e. NN0 |
25 |
|
eqid |
|- ; 3 4 = ; 3 4 |
26 |
|
eqid |
|- ; 2 3 = ; 2 3 |
27 |
|
3t3e9 |
|- ( 3 x. 3 ) = 9 |
28 |
|
2p1e3 |
|- ( 2 + 1 ) = 3 |
29 |
27 28
|
oveq12i |
|- ( ( 3 x. 3 ) + ( 2 + 1 ) ) = ( 9 + 3 ) |
30 |
|
9p3e12 |
|- ( 9 + 3 ) = ; 1 2 |
31 |
29 30
|
eqtri |
|- ( ( 3 x. 3 ) + ( 2 + 1 ) ) = ; 1 2 |
32 |
|
4t3e12 |
|- ( 4 x. 3 ) = ; 1 2 |
33 |
|
3cn |
|- 3 e. CC |
34 |
|
2cn |
|- 2 e. CC |
35 |
|
3p2e5 |
|- ( 3 + 2 ) = 5 |
36 |
33 34 35
|
addcomli |
|- ( 2 + 3 ) = 5 |
37 |
6 7 3 32 36
|
decaddi |
|- ( ( 4 x. 3 ) + 3 ) = ; 1 5 |
38 |
3 20 7 3 25 26 3 9 6 31 37
|
decmac |
|- ( ( ; 3 4 x. 3 ) + ; 2 3 ) = ; ; 1 2 5 |
39 |
|
7cn |
|- 7 e. CC |
40 |
|
7t3e21 |
|- ( 7 x. 3 ) = ; 2 1 |
41 |
39 33 40
|
mulcomli |
|- ( 3 x. 7 ) = ; 2 1 |
42 |
|
1p2e3 |
|- ( 1 + 2 ) = 3 |
43 |
7 6 7 41 42
|
decaddi |
|- ( ( 3 x. 7 ) + 2 ) = ; 2 3 |
44 |
|
4cn |
|- 4 e. CC |
45 |
|
7t4e28 |
|- ( 7 x. 4 ) = ; 2 8 |
46 |
39 44 45
|
mulcomli |
|- ( 4 x. 7 ) = ; 2 8 |
47 |
22 3 20 25 11 7 43 46
|
decmul1c |
|- ( ; 3 4 x. 7 ) = ; ; 2 3 8 |
48 |
21 3 22 23 11 24 38 47
|
decmul2c |
|- ( ; 3 4 x. ; 3 7 ) = ; ; ; 1 2 5 8 |
49 |
19 48
|
eqtr4i |
|- ( N - 1 ) = ( ; 3 4 x. ; 3 7 ) |
50 |
|
9nn0 |
|- 9 e. NN0 |
51 |
10 50
|
deccl |
|- ; ; ; 1 2 5 9 e. NN0 |
52 |
1 51
|
eqeltri |
|- N e. NN0 |
53 |
52
|
nn0cni |
|- N e. CC |
54 |
|
npcan |
|- ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) |
55 |
53 14 54
|
mp2an |
|- ( ( N - 1 ) + 1 ) = N |
56 |
55
|
eqcomi |
|- N = ( ( N - 1 ) + 1 ) |
57 |
|
1nn |
|- 1 e. NN |
58 |
|
2nn |
|- 2 e. NN |
59 |
3 22
|
deccl |
|- ; 3 7 e. NN0 |
60 |
59
|
numexp1 |
|- ( ; 3 7 ^ 1 ) = ; 3 7 |
61 |
60
|
oveq2i |
|- ( ; 3 4 x. ( ; 3 7 ^ 1 ) ) = ( ; 3 4 x. ; 3 7 ) |
62 |
49 61
|
eqtr4i |
|- ( N - 1 ) = ( ; 3 4 x. ( ; 3 7 ^ 1 ) ) |
63 |
|
7nn |
|- 7 e. NN |
64 |
|
4lt7 |
|- 4 < 7 |
65 |
3 20 63 64
|
declt |
|- ; 3 4 < ; 3 7 |
66 |
65 60
|
breqtrri |
|- ; 3 4 < ( ; 3 7 ^ 1 ) |
67 |
1
|
1259lem4 |
|- ( ( 2 ^ ( N - 1 ) ) mod N ) = ( 1 mod N ) |
68 |
1
|
1259lem5 |
|- ( ( ( 2 ^ ; 3 4 ) - 1 ) gcd N ) = 1 |
69 |
2 5 49 56 5 57 58 62 66 67 68
|
pockthi |
|- N e. Prime |