Description: Lemma for 1259prm . Calculate a power mod. In decimal, we calculate 2 ^ 3 0 6 = ( 2 ^ 7 6 ) ^ 4 x. 4 == 5 ^ 4 x. 4 = 2 N - 1 8 , 2 ^ 6 1 2 = ( 2 ^ 3 0 6 ) ^ 2 == 1 8 ^ 2 = 3 2 4 , 2 ^ 6 2 9 = 2 ^ 6 1 2 x. 2 ^ 1 7 == 3 2 4 x. 1 3 6 = 3 5 N - 1 and finally 2 ^ ( N - 1 ) = ( 2 ^ 6 2 9 ) ^ 2 == 1 ^ 2 = 1 . (Contributed by Mario Carneiro, 22-Feb-2014) (Revised by Mario Carneiro, 20-Apr-2015) (Proof shortened by AV, 16-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 1259prm.1 | |- N = ; ; ; 1 2 5 9 |
|
| Assertion | 1259lem4 | |- ( ( 2 ^ ( N - 1 ) ) mod N ) = ( 1 mod N ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1259prm.1 | |- N = ; ; ; 1 2 5 9 |
|
| 2 | 2nn | |- 2 e. NN |
|
| 3 | 6nn0 | |- 6 e. NN0 |
|
| 4 | 2nn0 | |- 2 e. NN0 |
|
| 5 | 3 4 | deccl | |- ; 6 2 e. NN0 |
| 6 | 9nn0 | |- 9 e. NN0 |
|
| 7 | 5 6 | deccl | |- ; ; 6 2 9 e. NN0 |
| 8 | 0z | |- 0 e. ZZ |
|
| 9 | 1nn | |- 1 e. NN |
|
| 10 | 1nn0 | |- 1 e. NN0 |
|
| 11 | 10 4 | deccl | |- ; 1 2 e. NN0 |
| 12 | 5nn0 | |- 5 e. NN0 |
|
| 13 | 11 12 | deccl | |- ; ; 1 2 5 e. NN0 |
| 14 | 8nn0 | |- 8 e. NN0 |
|
| 15 | 13 14 | deccl | |- ; ; ; 1 2 5 8 e. NN0 |
| 16 | 15 | nn0cni | |- ; ; ; 1 2 5 8 e. CC |
| 17 | ax-1cn | |- 1 e. CC |
|
| 18 | 8p1e9 | |- ( 8 + 1 ) = 9 |
|
| 19 | eqid | |- ; ; ; 1 2 5 8 = ; ; ; 1 2 5 8 |
|
| 20 | 13 14 18 19 | decsuc | |- ( ; ; ; 1 2 5 8 + 1 ) = ; ; ; 1 2 5 9 |
| 21 | 1 20 | eqtr4i | |- N = ( ; ; ; 1 2 5 8 + 1 ) |
| 22 | 16 17 21 | mvrraddi | |- ( N - 1 ) = ; ; ; 1 2 5 8 |
| 23 | 22 15 | eqeltri | |- ( N - 1 ) e. NN0 |
| 24 | 9nn | |- 9 e. NN |
|
| 25 | 13 24 | decnncl | |- ; ; ; 1 2 5 9 e. NN |
| 26 | 1 25 | eqeltri | |- N e. NN |
| 27 | 3 10 | deccl | |- ; 6 1 e. NN0 |
| 28 | 27 4 | deccl | |- ; ; 6 1 2 e. NN0 |
| 29 | 3nn0 | |- 3 e. NN0 |
|
| 30 | 4nn0 | |- 4 e. NN0 |
|
| 31 | 29 30 | deccl | |- ; 3 4 e. NN0 |
| 32 | 31 | nn0zi | |- ; 3 4 e. ZZ |
| 33 | 29 4 | deccl | |- ; 3 2 e. NN0 |
| 34 | 33 30 | deccl | |- ; ; 3 2 4 e. NN0 |
| 35 | 7nn0 | |- 7 e. NN0 |
|
| 36 | 10 35 | deccl | |- ; 1 7 e. NN0 |
| 37 | 10 29 | deccl | |- ; 1 3 e. NN0 |
| 38 | 37 3 | deccl | |- ; ; 1 3 6 e. NN0 |
| 39 | 0nn0 | |- 0 e. NN0 |
|
| 40 | 29 39 | deccl | |- ; 3 0 e. NN0 |
| 41 | 40 3 | deccl | |- ; ; 3 0 6 e. NN0 |
| 42 | 8nn | |- 8 e. NN |
|
| 43 | 10 42 | decnncl | |- ; 1 8 e. NN |
| 44 | 11 30 | deccl | |- ; ; 1 2 4 e. NN0 |
| 45 | 44 10 | deccl | |- ; ; ; 1 2 4 1 e. NN0 |
| 46 | 10 12 | deccl | |- ; 1 5 e. NN0 |
| 47 | 46 29 | deccl | |- ; ; 1 5 3 e. NN0 |
| 48 | 1z | |- 1 e. ZZ |
|
| 49 | 12 39 | deccl | |- ; 5 0 e. NN0 |
| 50 | 46 4 | deccl | |- ; ; 1 5 2 e. NN0 |
| 51 | 4 12 | deccl | |- ; 2 5 e. NN0 |
| 52 | 35 3 | deccl | |- ; 7 6 e. NN0 |
| 53 | 1 | 1259lem3 | |- ( ( 2 ^ ; 7 6 ) mod N ) = ( 5 mod N ) |
| 54 | eqid | |- ; 7 6 = ; 7 6 |
|
| 55 | 4p1e5 | |- ( 4 + 1 ) = 5 |
|
| 56 | 7cn | |- 7 e. CC |
|
| 57 | 2cn | |- 2 e. CC |
|
| 58 | 7t2e14 | |- ( 7 x. 2 ) = ; 1 4 |
|
| 59 | 56 57 58 | mulcomli | |- ( 2 x. 7 ) = ; 1 4 |
| 60 | 10 30 55 59 | decsuc | |- ( ( 2 x. 7 ) + 1 ) = ; 1 5 |
| 61 | 6cn | |- 6 e. CC |
|
| 62 | 6t2e12 | |- ( 6 x. 2 ) = ; 1 2 |
|
| 63 | 61 57 62 | mulcomli | |- ( 2 x. 6 ) = ; 1 2 |
| 64 | 4 35 3 54 4 10 60 63 | decmul2c | |- ( 2 x. ; 7 6 ) = ; ; 1 5 2 |
| 65 | 51 | nn0cni | |- ; 2 5 e. CC |
| 66 | 65 | addlidi | |- ( 0 + ; 2 5 ) = ; 2 5 |
| 67 | 26 | nncni | |- N e. CC |
| 68 | 67 | mul02i | |- ( 0 x. N ) = 0 |
| 69 | 68 | oveq1i | |- ( ( 0 x. N ) + ; 2 5 ) = ( 0 + ; 2 5 ) |
| 70 | 5t5e25 | |- ( 5 x. 5 ) = ; 2 5 |
|
| 71 | 66 69 70 | 3eqtr4i | |- ( ( 0 x. N ) + ; 2 5 ) = ( 5 x. 5 ) |
| 72 | 26 2 52 8 12 51 53 64 71 | mod2xi | |- ( ( 2 ^ ; ; 1 5 2 ) mod N ) = ( ; 2 5 mod N ) |
| 73 | 2p1e3 | |- ( 2 + 1 ) = 3 |
|
| 74 | eqid | |- ; ; 1 5 2 = ; ; 1 5 2 |
|
| 75 | 46 4 73 74 | decsuc | |- ( ; ; 1 5 2 + 1 ) = ; ; 1 5 3 |
| 76 | 49 | nn0cni | |- ; 5 0 e. CC |
| 77 | 76 | addlidi | |- ( 0 + ; 5 0 ) = ; 5 0 |
| 78 | 68 | oveq1i | |- ( ( 0 x. N ) + ; 5 0 ) = ( 0 + ; 5 0 ) |
| 79 | eqid | |- ; 2 5 = ; 2 5 |
|
| 80 | 2t2e4 | |- ( 2 x. 2 ) = 4 |
|
| 81 | 80 | oveq1i | |- ( ( 2 x. 2 ) + 1 ) = ( 4 + 1 ) |
| 82 | 81 55 | eqtri | |- ( ( 2 x. 2 ) + 1 ) = 5 |
| 83 | 5t2e10 | |- ( 5 x. 2 ) = ; 1 0 |
|
| 84 | 4 4 12 79 39 10 82 83 | decmul1c | |- ( ; 2 5 x. 2 ) = ; 5 0 |
| 85 | 77 78 84 | 3eqtr4i | |- ( ( 0 x. N ) + ; 5 0 ) = ( ; 2 5 x. 2 ) |
| 86 | 26 2 50 8 51 49 72 75 85 | modxp1i | |- ( ( 2 ^ ; ; 1 5 3 ) mod N ) = ( ; 5 0 mod N ) |
| 87 | eqid | |- ; ; 1 5 3 = ; ; 1 5 3 |
|
| 88 | eqid | |- ; 1 5 = ; 1 5 |
|
| 89 | 57 | mulridi | |- ( 2 x. 1 ) = 2 |
| 90 | 89 | oveq1i | |- ( ( 2 x. 1 ) + 1 ) = ( 2 + 1 ) |
| 91 | 90 73 | eqtri | |- ( ( 2 x. 1 ) + 1 ) = 3 |
| 92 | 5cn | |- 5 e. CC |
|
| 93 | 92 57 83 | mulcomli | |- ( 2 x. 5 ) = ; 1 0 |
| 94 | 4 10 12 88 39 10 91 93 | decmul2c | |- ( 2 x. ; 1 5 ) = ; 3 0 |
| 95 | 94 | oveq1i | |- ( ( 2 x. ; 1 5 ) + 0 ) = ( ; 3 0 + 0 ) |
| 96 | 40 | nn0cni | |- ; 3 0 e. CC |
| 97 | 96 | addridi | |- ( ; 3 0 + 0 ) = ; 3 0 |
| 98 | 95 97 | eqtri | |- ( ( 2 x. ; 1 5 ) + 0 ) = ; 3 0 |
| 99 | 3cn | |- 3 e. CC |
|
| 100 | 3t2e6 | |- ( 3 x. 2 ) = 6 |
|
| 101 | 99 57 100 | mulcomli | |- ( 2 x. 3 ) = 6 |
| 102 | 3 | dec0h | |- 6 = ; 0 6 |
| 103 | 101 102 | eqtri | |- ( 2 x. 3 ) = ; 0 6 |
| 104 | 4 46 29 87 3 39 98 103 | decmul2c | |- ( 2 x. ; ; 1 5 3 ) = ; ; 3 0 6 |
| 105 | 67 | mullidi | |- ( 1 x. N ) = N |
| 106 | 105 1 | eqtri | |- ( 1 x. N ) = ; ; ; 1 2 5 9 |
| 107 | eqid | |- ; ; ; 1 2 4 1 = ; ; ; 1 2 4 1 |
|
| 108 | 4 30 | deccl | |- ; 2 4 e. NN0 |
| 109 | eqid | |- ; 2 4 = ; 2 4 |
|
| 110 | 4 30 55 109 | decsuc | |- ( ; 2 4 + 1 ) = ; 2 5 |
| 111 | eqid | |- ; ; 1 2 5 = ; ; 1 2 5 |
|
| 112 | eqid | |- ; ; 1 2 4 = ; ; 1 2 4 |
|
| 113 | eqid | |- ; 1 2 = ; 1 2 |
|
| 114 | 1p1e2 | |- ( 1 + 1 ) = 2 |
|
| 115 | 2p2e4 | |- ( 2 + 2 ) = 4 |
|
| 116 | 10 4 10 4 113 113 114 115 | decadd | |- ( ; 1 2 + ; 1 2 ) = ; 2 4 |
| 117 | 5p4e9 | |- ( 5 + 4 ) = 9 |
|
| 118 | 11 12 11 30 111 112 116 117 | decadd | |- ( ; ; 1 2 5 + ; ; 1 2 4 ) = ; ; 2 4 9 |
| 119 | 108 110 118 | decsucc | |- ( ( ; ; 1 2 5 + ; ; 1 2 4 ) + 1 ) = ; ; 2 5 0 |
| 120 | 9p1e10 | |- ( 9 + 1 ) = ; 1 0 |
|
| 121 | 13 6 44 10 106 107 119 120 | decaddc2 | |- ( ( 1 x. N ) + ; ; ; 1 2 4 1 ) = ; ; ; 2 5 0 0 |
| 122 | eqid | |- ; 5 0 = ; 5 0 |
|
| 123 | 92 | mul02i | |- ( 0 x. 5 ) = 0 |
| 124 | 12 12 39 122 70 123 | decmul1 | |- ( ; 5 0 x. 5 ) = ; ; 2 5 0 |
| 125 | 124 | oveq1i | |- ( ( ; 5 0 x. 5 ) + 0 ) = ( ; ; 2 5 0 + 0 ) |
| 126 | 51 39 | deccl | |- ; ; 2 5 0 e. NN0 |
| 127 | 126 | nn0cni | |- ; ; 2 5 0 e. CC |
| 128 | 127 | addridi | |- ( ; ; 2 5 0 + 0 ) = ; ; 2 5 0 |
| 129 | 125 128 | eqtri | |- ( ( ; 5 0 x. 5 ) + 0 ) = ; ; 2 5 0 |
| 130 | 76 | mul01i | |- ( ; 5 0 x. 0 ) = 0 |
| 131 | 39 | dec0h | |- 0 = ; 0 0 |
| 132 | 130 131 | eqtri | |- ( ; 5 0 x. 0 ) = ; 0 0 |
| 133 | 49 12 39 122 39 39 129 132 | decmul2c | |- ( ; 5 0 x. ; 5 0 ) = ; ; ; 2 5 0 0 |
| 134 | 121 133 | eqtr4i | |- ( ( 1 x. N ) + ; ; ; 1 2 4 1 ) = ( ; 5 0 x. ; 5 0 ) |
| 135 | 26 2 47 48 49 45 86 104 134 | mod2xi | |- ( ( 2 ^ ; ; 3 0 6 ) mod N ) = ( ; ; ; 1 2 4 1 mod N ) |
| 136 | eqid | |- ; ; 3 0 6 = ; ; 3 0 6 |
|
| 137 | eqid | |- ; 3 0 = ; 3 0 |
|
| 138 | 10 | dec0h | |- 1 = ; 0 1 |
| 139 | 00id | |- ( 0 + 0 ) = 0 |
|
| 140 | 101 139 | oveq12i | |- ( ( 2 x. 3 ) + ( 0 + 0 ) ) = ( 6 + 0 ) |
| 141 | 61 | addridi | |- ( 6 + 0 ) = 6 |
| 142 | 140 141 | eqtri | |- ( ( 2 x. 3 ) + ( 0 + 0 ) ) = 6 |
| 143 | 57 | mul01i | |- ( 2 x. 0 ) = 0 |
| 144 | 143 | oveq1i | |- ( ( 2 x. 0 ) + 1 ) = ( 0 + 1 ) |
| 145 | 0p1e1 | |- ( 0 + 1 ) = 1 |
|
| 146 | 144 145 138 | 3eqtri | |- ( ( 2 x. 0 ) + 1 ) = ; 0 1 |
| 147 | 29 39 39 10 137 138 4 10 39 142 146 | decma2c | |- ( ( 2 x. ; 3 0 ) + 1 ) = ; 6 1 |
| 148 | 4 40 3 136 4 10 147 63 | decmul2c | |- ( 2 x. ; ; 3 0 6 ) = ; ; 6 1 2 |
| 149 | eqid | |- ; 1 8 = ; 1 8 |
|
| 150 | 11 30 55 112 | decsuc | |- ( ; ; 1 2 4 + 1 ) = ; ; 1 2 5 |
| 151 | 8cn | |- 8 e. CC |
|
| 152 | 151 17 18 | addcomli | |- ( 1 + 8 ) = 9 |
| 153 | 44 10 10 14 107 149 150 152 | decadd | |- ( ; ; ; 1 2 4 1 + ; 1 8 ) = ; ; ; 1 2 5 9 |
| 154 | 153 1 | eqtr4i | |- ( ; ; ; 1 2 4 1 + ; 1 8 ) = N |
| 155 | 34 | nn0cni | |- ; ; 3 2 4 e. CC |
| 156 | 155 | addlidi | |- ( 0 + ; ; 3 2 4 ) = ; ; 3 2 4 |
| 157 | 68 | oveq1i | |- ( ( 0 x. N ) + ; ; 3 2 4 ) = ( 0 + ; ; 3 2 4 ) |
| 158 | 10 14 | deccl | |- ; 1 8 e. NN0 |
| 159 | 10 30 | deccl | |- ; 1 4 e. NN0 |
| 160 | eqid | |- ; 1 4 = ; 1 4 |
|
| 161 | 17 | mulridi | |- ( 1 x. 1 ) = 1 |
| 162 | 161 114 | oveq12i | |- ( ( 1 x. 1 ) + ( 1 + 1 ) ) = ( 1 + 2 ) |
| 163 | 1p2e3 | |- ( 1 + 2 ) = 3 |
|
| 164 | 162 163 | eqtri | |- ( ( 1 x. 1 ) + ( 1 + 1 ) ) = 3 |
| 165 | 151 | mulridi | |- ( 8 x. 1 ) = 8 |
| 166 | 165 | oveq1i | |- ( ( 8 x. 1 ) + 4 ) = ( 8 + 4 ) |
| 167 | 8p4e12 | |- ( 8 + 4 ) = ; 1 2 |
|
| 168 | 166 167 | eqtri | |- ( ( 8 x. 1 ) + 4 ) = ; 1 2 |
| 169 | 10 14 10 30 149 160 10 4 10 164 168 | decmac | |- ( ( ; 1 8 x. 1 ) + ; 1 4 ) = ; 3 2 |
| 170 | 151 | mullidi | |- ( 1 x. 8 ) = 8 |
| 171 | 170 | oveq1i | |- ( ( 1 x. 8 ) + 6 ) = ( 8 + 6 ) |
| 172 | 8p6e14 | |- ( 8 + 6 ) = ; 1 4 |
|
| 173 | 171 172 | eqtri | |- ( ( 1 x. 8 ) + 6 ) = ; 1 4 |
| 174 | 8t8e64 | |- ( 8 x. 8 ) = ; 6 4 |
|
| 175 | 14 10 14 149 30 3 173 174 | decmul1c | |- ( ; 1 8 x. 8 ) = ; ; 1 4 4 |
| 176 | 158 10 14 149 30 159 169 175 | decmul2c | |- ( ; 1 8 x. ; 1 8 ) = ; ; 3 2 4 |
| 177 | 156 157 176 | 3eqtr4i | |- ( ( 0 x. N ) + ; ; 3 2 4 ) = ( ; 1 8 x. ; 1 8 ) |
| 178 | 2 41 8 43 34 45 135 148 154 177 | mod2xnegi | |- ( ( 2 ^ ; ; 6 1 2 ) mod N ) = ( ; ; 3 2 4 mod N ) |
| 179 | 1 | 1259lem1 | |- ( ( 2 ^ ; 1 7 ) mod N ) = ( ; ; 1 3 6 mod N ) |
| 180 | eqid | |- ; ; 6 1 2 = ; ; 6 1 2 |
|
| 181 | eqid | |- ; 1 7 = ; 1 7 |
|
| 182 | eqid | |- ; 6 1 = ; 6 1 |
|
| 183 | 3 10 114 182 | decsuc | |- ( ; 6 1 + 1 ) = ; 6 2 |
| 184 | 7p2e9 | |- ( 7 + 2 ) = 9 |
|
| 185 | 56 57 184 | addcomli | |- ( 2 + 7 ) = 9 |
| 186 | 27 4 10 35 180 181 183 185 | decadd | |- ( ; ; 6 1 2 + ; 1 7 ) = ; ; 6 2 9 |
| 187 | 29 10 | deccl | |- ; 3 1 e. NN0 |
| 188 | eqid | |- ; 3 1 = ; 3 1 |
|
| 189 | 3p2e5 | |- ( 3 + 2 ) = 5 |
|
| 190 | 99 57 189 | addcomli | |- ( 2 + 3 ) = 5 |
| 191 | 10 4 29 113 190 | decaddi | |- ( ; 1 2 + 3 ) = ; 1 5 |
| 192 | 5p1e6 | |- ( 5 + 1 ) = 6 |
|
| 193 | 11 12 29 10 111 188 191 192 | decadd | |- ( ; ; 1 2 5 + ; 3 1 ) = ; ; 1 5 6 |
| 194 | 114 | oveq1i | |- ( ( 1 + 1 ) + 1 ) = ( 2 + 1 ) |
| 195 | 194 73 | eqtri | |- ( ( 1 + 1 ) + 1 ) = 3 |
| 196 | 7p5e12 | |- ( 7 + 5 ) = ; 1 2 |
|
| 197 | 56 92 196 | addcomli | |- ( 5 + 7 ) = ; 1 2 |
| 198 | 10 12 10 35 88 181 195 4 197 | decaddc | |- ( ; 1 5 + ; 1 7 ) = ; 3 2 |
| 199 | eqid | |- ; 3 4 = ; 3 4 |
|
| 200 | 7p3e10 | |- ( 7 + 3 ) = ; 1 0 |
|
| 201 | 56 99 200 | addcomli | |- ( 3 + 7 ) = ; 1 0 |
| 202 | 99 | mulridi | |- ( 3 x. 1 ) = 3 |
| 203 | 17 | addridi | |- ( 1 + 0 ) = 1 |
| 204 | 202 203 | oveq12i | |- ( ( 3 x. 1 ) + ( 1 + 0 ) ) = ( 3 + 1 ) |
| 205 | 3p1e4 | |- ( 3 + 1 ) = 4 |
|
| 206 | 204 205 | eqtri | |- ( ( 3 x. 1 ) + ( 1 + 0 ) ) = 4 |
| 207 | 4cn | |- 4 e. CC |
|
| 208 | 207 | mulridi | |- ( 4 x. 1 ) = 4 |
| 209 | 208 | oveq1i | |- ( ( 4 x. 1 ) + 0 ) = ( 4 + 0 ) |
| 210 | 207 | addridi | |- ( 4 + 0 ) = 4 |
| 211 | 30 | dec0h | |- 4 = ; 0 4 |
| 212 | 209 210 211 | 3eqtri | |- ( ( 4 x. 1 ) + 0 ) = ; 0 4 |
| 213 | 29 30 10 39 199 201 10 30 39 206 212 | decmac | |- ( ( ; 3 4 x. 1 ) + ( 3 + 7 ) ) = ; 4 4 |
| 214 | 4 | dec0h | |- 2 = ; 0 2 |
| 215 | 100 145 | oveq12i | |- ( ( 3 x. 2 ) + ( 0 + 1 ) ) = ( 6 + 1 ) |
| 216 | 6p1e7 | |- ( 6 + 1 ) = 7 |
|
| 217 | 215 216 | eqtri | |- ( ( 3 x. 2 ) + ( 0 + 1 ) ) = 7 |
| 218 | 4t2e8 | |- ( 4 x. 2 ) = 8 |
|
| 219 | 218 | oveq1i | |- ( ( 4 x. 2 ) + 2 ) = ( 8 + 2 ) |
| 220 | 8p2e10 | |- ( 8 + 2 ) = ; 1 0 |
|
| 221 | 219 220 | eqtri | |- ( ( 4 x. 2 ) + 2 ) = ; 1 0 |
| 222 | 29 30 39 4 199 214 4 39 10 217 221 | decmac | |- ( ( ; 3 4 x. 2 ) + 2 ) = ; 7 0 |
| 223 | 10 4 29 4 113 198 31 39 35 213 222 | decma2c | |- ( ( ; 3 4 x. ; 1 2 ) + ( ; 1 5 + ; 1 7 ) ) = ; ; 4 4 0 |
| 224 | 5t3e15 | |- ( 5 x. 3 ) = ; 1 5 |
|
| 225 | 92 99 224 | mulcomli | |- ( 3 x. 5 ) = ; 1 5 |
| 226 | 5p2e7 | |- ( 5 + 2 ) = 7 |
|
| 227 | 10 12 4 225 226 | decaddi | |- ( ( 3 x. 5 ) + 2 ) = ; 1 7 |
| 228 | 5t4e20 | |- ( 5 x. 4 ) = ; 2 0 |
|
| 229 | 92 207 228 | mulcomli | |- ( 4 x. 5 ) = ; 2 0 |
| 230 | 61 | addlidi | |- ( 0 + 6 ) = 6 |
| 231 | 4 39 3 229 230 | decaddi | |- ( ( 4 x. 5 ) + 6 ) = ; 2 6 |
| 232 | 29 30 3 199 12 3 4 227 231 | decrmac | |- ( ( ; 3 4 x. 5 ) + 6 ) = ; ; 1 7 6 |
| 233 | 11 12 46 3 111 193 31 3 36 223 232 | decma2c | |- ( ( ; 3 4 x. ; ; 1 2 5 ) + ( ; ; 1 2 5 + ; 3 1 ) ) = ; ; ; 4 4 0 6 |
| 234 | 9cn | |- 9 e. CC |
|
| 235 | 9t3e27 | |- ( 9 x. 3 ) = ; 2 7 |
|
| 236 | 234 99 235 | mulcomli | |- ( 3 x. 9 ) = ; 2 7 |
| 237 | 7p4e11 | |- ( 7 + 4 ) = ; 1 1 |
|
| 238 | 4 35 30 236 73 10 237 | decaddci | |- ( ( 3 x. 9 ) + 4 ) = ; 3 1 |
| 239 | 9t4e36 | |- ( 9 x. 4 ) = ; 3 6 |
|
| 240 | 234 207 239 | mulcomli | |- ( 4 x. 9 ) = ; 3 6 |
| 241 | 151 61 172 | addcomli | |- ( 6 + 8 ) = ; 1 4 |
| 242 | 29 3 14 240 205 30 241 | decaddci | |- ( ( 4 x. 9 ) + 8 ) = ; 4 4 |
| 243 | 29 30 14 199 6 30 30 238 242 | decrmac | |- ( ( ; 3 4 x. 9 ) + 8 ) = ; ; 3 1 4 |
| 244 | 13 6 13 14 1 22 31 30 187 233 243 | decma2c | |- ( ( ; 3 4 x. N ) + ( N - 1 ) ) = ; ; ; ; 4 4 0 6 4 |
| 245 | eqid | |- ; ; 1 3 6 = ; ; 1 3 6 |
|
| 246 | 10 6 | deccl | |- ; 1 9 e. NN0 |
| 247 | 246 30 | deccl | |- ; ; 1 9 4 e. NN0 |
| 248 | eqid | |- ; 1 3 = ; 1 3 |
|
| 249 | eqid | |- ; ; 1 9 4 = ; ; 1 9 4 |
|
| 250 | 6 35 | deccl | |- ; 9 7 e. NN0 |
| 251 | 10 10 | deccl | |- ; 1 1 e. NN0 |
| 252 | eqid | |- ; ; 3 2 4 = ; ; 3 2 4 |
|
| 253 | eqid | |- ; 1 9 = ; 1 9 |
|
| 254 | eqid | |- ; 9 7 = ; 9 7 |
|
| 255 | 234 17 120 | addcomli | |- ( 1 + 9 ) = ; 1 0 |
| 256 | 10 39 145 255 | decsuc | |- ( ( 1 + 9 ) + 1 ) = ; 1 1 |
| 257 | 9p7e16 | |- ( 9 + 7 ) = ; 1 6 |
|
| 258 | 10 6 6 35 253 254 256 3 257 | decaddc | |- ( ; 1 9 + ; 9 7 ) = ; ; 1 1 6 |
| 259 | eqid | |- ; 3 2 = ; 3 2 |
|
| 260 | eqid | |- ; 1 1 = ; 1 1 |
|
| 261 | 10 10 114 260 | decsuc | |- ( ; 1 1 + 1 ) = ; 1 2 |
| 262 | 89 | oveq1i | |- ( ( 2 x. 1 ) + 2 ) = ( 2 + 2 ) |
| 263 | 262 115 211 | 3eqtri | |- ( ( 2 x. 1 ) + 2 ) = ; 0 4 |
| 264 | 29 4 10 4 259 261 10 30 39 206 263 | decmac | |- ( ( ; 3 2 x. 1 ) + ( ; 1 1 + 1 ) ) = ; 4 4 |
| 265 | 208 | oveq1i | |- ( ( 4 x. 1 ) + 6 ) = ( 4 + 6 ) |
| 266 | 6p4e10 | |- ( 6 + 4 ) = ; 1 0 |
|
| 267 | 61 207 266 | addcomli | |- ( 4 + 6 ) = ; 1 0 |
| 268 | 265 267 | eqtri | |- ( ( 4 x. 1 ) + 6 ) = ; 1 0 |
| 269 | 33 30 251 3 252 258 10 39 10 264 268 | decmac | |- ( ( ; ; 3 2 4 x. 1 ) + ( ; 1 9 + ; 9 7 ) ) = ; ; 4 4 0 |
| 270 | 145 138 | eqtri | |- ( 0 + 1 ) = ; 0 1 |
| 271 | 3t3e9 | |- ( 3 x. 3 ) = 9 |
|
| 272 | 271 139 | oveq12i | |- ( ( 3 x. 3 ) + ( 0 + 0 ) ) = ( 9 + 0 ) |
| 273 | 234 | addridi | |- ( 9 + 0 ) = 9 |
| 274 | 272 273 | eqtri | |- ( ( 3 x. 3 ) + ( 0 + 0 ) ) = 9 |
| 275 | 101 | oveq1i | |- ( ( 2 x. 3 ) + 1 ) = ( 6 + 1 ) |
| 276 | 35 | dec0h | |- 7 = ; 0 7 |
| 277 | 275 216 276 | 3eqtri | |- ( ( 2 x. 3 ) + 1 ) = ; 0 7 |
| 278 | 29 4 39 10 259 270 29 35 39 274 277 | decmac | |- ( ( ; 3 2 x. 3 ) + ( 0 + 1 ) ) = ; 9 7 |
| 279 | 4t3e12 | |- ( 4 x. 3 ) = ; 1 2 |
|
| 280 | 4p2e6 | |- ( 4 + 2 ) = 6 |
|
| 281 | 207 57 280 | addcomli | |- ( 2 + 4 ) = 6 |
| 282 | 10 4 30 279 281 | decaddi | |- ( ( 4 x. 3 ) + 4 ) = ; 1 6 |
| 283 | 33 30 39 30 252 211 29 3 10 278 282 | decmac | |- ( ( ; ; 3 2 4 x. 3 ) + 4 ) = ; ; 9 7 6 |
| 284 | 10 29 246 30 248 249 34 3 250 269 283 | decma2c | |- ( ( ; ; 3 2 4 x. ; 1 3 ) + ; ; 1 9 4 ) = ; ; ; 4 4 0 6 |
| 285 | 6t3e18 | |- ( 6 x. 3 ) = ; 1 8 |
|
| 286 | 61 99 285 | mulcomli | |- ( 3 x. 6 ) = ; 1 8 |
| 287 | 10 14 18 286 | decsuc | |- ( ( 3 x. 6 ) + 1 ) = ; 1 9 |
| 288 | 10 4 4 63 115 | decaddi | |- ( ( 2 x. 6 ) + 2 ) = ; 1 4 |
| 289 | 29 4 4 259 3 30 10 287 288 | decrmac | |- ( ( ; 3 2 x. 6 ) + 2 ) = ; ; 1 9 4 |
| 290 | 6t4e24 | |- ( 6 x. 4 ) = ; 2 4 |
|
| 291 | 61 207 290 | mulcomli | |- ( 4 x. 6 ) = ; 2 4 |
| 292 | 3 33 30 252 30 4 289 291 | decmul1c | |- ( ; ; 3 2 4 x. 6 ) = ; ; ; 1 9 4 4 |
| 293 | 34 37 3 245 30 247 284 292 | decmul2c | |- ( ; ; 3 2 4 x. ; ; 1 3 6 ) = ; ; ; ; 4 4 0 6 4 |
| 294 | 244 293 | eqtr4i | |- ( ( ; 3 4 x. N ) + ( N - 1 ) ) = ( ; ; 3 2 4 x. ; ; 1 3 6 ) |
| 295 | 26 2 28 32 34 23 36 38 178 179 186 294 | modxai | |- ( ( 2 ^ ; ; 6 2 9 ) mod N ) = ( ( N - 1 ) mod N ) |
| 296 | eqid | |- ; ; 6 2 9 = ; ; 6 2 9 |
|
| 297 | eqid | |- ; 6 2 = ; 6 2 |
|
| 298 | 139 | oveq2i | |- ( ( 2 x. 6 ) + ( 0 + 0 ) ) = ( ( 2 x. 6 ) + 0 ) |
| 299 | 63 | oveq1i | |- ( ( 2 x. 6 ) + 0 ) = ( ; 1 2 + 0 ) |
| 300 | 11 | nn0cni | |- ; 1 2 e. CC |
| 301 | 300 | addridi | |- ( ; 1 2 + 0 ) = ; 1 2 |
| 302 | 298 299 301 | 3eqtri | |- ( ( 2 x. 6 ) + ( 0 + 0 ) ) = ; 1 2 |
| 303 | 12 | dec0h | |- 5 = ; 0 5 |
| 304 | 81 55 303 | 3eqtri | |- ( ( 2 x. 2 ) + 1 ) = ; 0 5 |
| 305 | 3 4 39 10 297 138 4 12 39 302 304 | decma2c | |- ( ( 2 x. ; 6 2 ) + 1 ) = ; ; 1 2 5 |
| 306 | 9t2e18 | |- ( 9 x. 2 ) = ; 1 8 |
|
| 307 | 234 57 306 | mulcomli | |- ( 2 x. 9 ) = ; 1 8 |
| 308 | 4 5 6 296 14 10 305 307 | decmul2c | |- ( 2 x. ; ; 6 2 9 ) = ; ; ; 1 2 5 8 |
| 309 | 308 22 | eqtr4i | |- ( 2 x. ; ; 6 2 9 ) = ( N - 1 ) |
| 310 | npcan | |- ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) |
|
| 311 | 67 17 310 | mp2an | |- ( ( N - 1 ) + 1 ) = N |
| 312 | 68 | oveq1i | |- ( ( 0 x. N ) + 1 ) = ( 0 + 1 ) |
| 313 | 145 312 161 | 3eqtr4i | |- ( ( 0 x. N ) + 1 ) = ( 1 x. 1 ) |
| 314 | 2 7 8 9 10 23 295 309 311 313 | mod2xnegi | |- ( ( 2 ^ ( N - 1 ) ) mod N ) = ( 1 mod N ) |