Metamath Proof Explorer


Theorem 1259lem1

Description: Lemma for 1259prm . Calculate a power mod. In decimal, we calculate 2 ^ 1 6 = 5 2 N + 6 8 == 6 8 and 2 ^ 1 7 == 6 8 x. 2 = 1 3 6 in this lemma. (Contributed by Mario Carneiro, 22-Feb-2014) (Revised by Mario Carneiro, 20-Apr-2015) (Proof shortened by AV, 16-Sep-2021)

Ref Expression
Hypothesis 1259prm.1
|- N = ; ; ; 1 2 5 9
Assertion 1259lem1
|- ( ( 2 ^ ; 1 7 ) mod N ) = ( ; ; 1 3 6 mod N )

Proof

Step Hyp Ref Expression
1 1259prm.1
 |-  N = ; ; ; 1 2 5 9
2 1nn0
 |-  1 e. NN0
3 2nn0
 |-  2 e. NN0
4 2 3 deccl
 |-  ; 1 2 e. NN0
5 5nn0
 |-  5 e. NN0
6 4 5 deccl
 |-  ; ; 1 2 5 e. NN0
7 9nn
 |-  9 e. NN
8 6 7 decnncl
 |-  ; ; ; 1 2 5 9 e. NN
9 1 8 eqeltri
 |-  N e. NN
10 2nn
 |-  2 e. NN
11 6nn0
 |-  6 e. NN0
12 2 11 deccl
 |-  ; 1 6 e. NN0
13 0z
 |-  0 e. ZZ
14 8nn0
 |-  8 e. NN0
15 11 14 deccl
 |-  ; 6 8 e. NN0
16 3nn0
 |-  3 e. NN0
17 2 16 deccl
 |-  ; 1 3 e. NN0
18 17 11 deccl
 |-  ; ; 1 3 6 e. NN0
19 5 3 deccl
 |-  ; 5 2 e. NN0
20 19 nn0zi
 |-  ; 5 2 e. ZZ
21 3 14 nn0expcli
 |-  ( 2 ^ 8 ) e. NN0
22 eqid
 |-  ( ( 2 ^ 8 ) mod N ) = ( ( 2 ^ 8 ) mod N )
23 14 nn0cni
 |-  8 e. CC
24 2cn
 |-  2 e. CC
25 8t2e16
 |-  ( 8 x. 2 ) = ; 1 6
26 23 24 25 mulcomli
 |-  ( 2 x. 8 ) = ; 1 6
27 9nn0
 |-  9 e. NN0
28 eqid
 |-  ; 6 8 = ; 6 8
29 4nn0
 |-  4 e. NN0
30 7nn0
 |-  7 e. NN0
31 29 30 deccl
 |-  ; 4 7 e. NN0
32 eqid
 |-  ; ; 1 2 5 = ; ; 1 2 5
33 0nn0
 |-  0 e. NN0
34 11 dec0h
 |-  6 = ; 0 6
35 eqid
 |-  ; 4 7 = ; 4 7
36 4cn
 |-  4 e. CC
37 36 addid2i
 |-  ( 0 + 4 ) = 4
38 37 oveq1i
 |-  ( ( 0 + 4 ) + 1 ) = ( 4 + 1 )
39 4p1e5
 |-  ( 4 + 1 ) = 5
40 38 39 eqtri
 |-  ( ( 0 + 4 ) + 1 ) = 5
41 7cn
 |-  7 e. CC
42 6cn
 |-  6 e. CC
43 7p6e13
 |-  ( 7 + 6 ) = ; 1 3
44 41 42 43 addcomli
 |-  ( 6 + 7 ) = ; 1 3
45 33 11 29 30 34 35 40 16 44 decaddc
 |-  ( 6 + ; 4 7 ) = ; 5 3
46 3 11 deccl
 |-  ; 2 6 e. NN0
47 eqid
 |-  ; 1 2 = ; 1 2
48 5 dec0h
 |-  5 = ; 0 5
49 eqid
 |-  ; 2 6 = ; 2 6
50 24 addid2i
 |-  ( 0 + 2 ) = 2
51 50 oveq1i
 |-  ( ( 0 + 2 ) + 1 ) = ( 2 + 1 )
52 2p1e3
 |-  ( 2 + 1 ) = 3
53 51 52 eqtri
 |-  ( ( 0 + 2 ) + 1 ) = 3
54 5cn
 |-  5 e. CC
55 6p5e11
 |-  ( 6 + 5 ) = ; 1 1
56 42 54 55 addcomli
 |-  ( 5 + 6 ) = ; 1 1
57 33 5 3 11 48 49 53 2 56 decaddc
 |-  ( 5 + ; 2 6 ) = ; 3 1
58 10nn0
 |-  ; 1 0 e. NN0
59 eqid
 |-  ; 5 2 = ; 5 2
60 58 nn0cni
 |-  ; 1 0 e. CC
61 3cn
 |-  3 e. CC
62 dec10p
 |-  ( ; 1 0 + 3 ) = ; 1 3
63 60 61 62 addcomli
 |-  ( 3 + ; 1 0 ) = ; 1 3
64 54 mulid1i
 |-  ( 5 x. 1 ) = 5
65 1p0e1
 |-  ( 1 + 0 ) = 1
66 64 65 oveq12i
 |-  ( ( 5 x. 1 ) + ( 1 + 0 ) ) = ( 5 + 1 )
67 5p1e6
 |-  ( 5 + 1 ) = 6
68 66 67 eqtri
 |-  ( ( 5 x. 1 ) + ( 1 + 0 ) ) = 6
69 24 mulid1i
 |-  ( 2 x. 1 ) = 2
70 69 oveq1i
 |-  ( ( 2 x. 1 ) + 3 ) = ( 2 + 3 )
71 3p2e5
 |-  ( 3 + 2 ) = 5
72 61 24 71 addcomli
 |-  ( 2 + 3 ) = 5
73 70 72 48 3eqtri
 |-  ( ( 2 x. 1 ) + 3 ) = ; 0 5
74 5 3 2 16 59 63 2 5 33 68 73 decmac
 |-  ( ( ; 5 2 x. 1 ) + ( 3 + ; 1 0 ) ) = ; 6 5
75 2 dec0h
 |-  1 = ; 0 1
76 5t2e10
 |-  ( 5 x. 2 ) = ; 1 0
77 00id
 |-  ( 0 + 0 ) = 0
78 76 77 oveq12i
 |-  ( ( 5 x. 2 ) + ( 0 + 0 ) ) = ( ; 1 0 + 0 )
79 dec10p
 |-  ( ; 1 0 + 0 ) = ; 1 0
80 78 79 eqtri
 |-  ( ( 5 x. 2 ) + ( 0 + 0 ) ) = ; 1 0
81 2t2e4
 |-  ( 2 x. 2 ) = 4
82 81 oveq1i
 |-  ( ( 2 x. 2 ) + 1 ) = ( 4 + 1 )
83 82 39 48 3eqtri
 |-  ( ( 2 x. 2 ) + 1 ) = ; 0 5
84 5 3 33 2 59 75 3 5 33 80 83 decmac
 |-  ( ( ; 5 2 x. 2 ) + 1 ) = ; ; 1 0 5
85 2 3 16 2 47 57 19 5 58 74 84 decma2c
 |-  ( ( ; 5 2 x. ; 1 2 ) + ( 5 + ; 2 6 ) ) = ; ; 6 5 5
86 5t5e25
 |-  ( 5 x. 5 ) = ; 2 5
87 3 5 67 86 decsuc
 |-  ( ( 5 x. 5 ) + 1 ) = ; 2 6
88 54 24 76 mulcomli
 |-  ( 2 x. 5 ) = ; 1 0
89 61 addid2i
 |-  ( 0 + 3 ) = 3
90 2 33 16 88 89 decaddi
 |-  ( ( 2 x. 5 ) + 3 ) = ; 1 3
91 5 3 16 59 5 16 2 87 90 decrmac
 |-  ( ( ; 5 2 x. 5 ) + 3 ) = ; ; 2 6 3
92 4 5 5 16 32 45 19 16 46 85 91 decma2c
 |-  ( ( ; 5 2 x. ; ; 1 2 5 ) + ( 6 + ; 4 7 ) ) = ; ; ; 6 5 5 3
93 9cn
 |-  9 e. CC
94 9t5e45
 |-  ( 9 x. 5 ) = ; 4 5
95 93 54 94 mulcomli
 |-  ( 5 x. 9 ) = ; 4 5
96 5p2e7
 |-  ( 5 + 2 ) = 7
97 29 5 3 95 96 decaddi
 |-  ( ( 5 x. 9 ) + 2 ) = ; 4 7
98 9t2e18
 |-  ( 9 x. 2 ) = ; 1 8
99 93 24 98 mulcomli
 |-  ( 2 x. 9 ) = ; 1 8
100 1p1e2
 |-  ( 1 + 1 ) = 2
101 8p8e16
 |-  ( 8 + 8 ) = ; 1 6
102 2 14 14 99 100 11 101 decaddci
 |-  ( ( 2 x. 9 ) + 8 ) = ; 2 6
103 5 3 14 59 27 11 3 97 102 decrmac
 |-  ( ( ; 5 2 x. 9 ) + 8 ) = ; ; 4 7 6
104 6 27 11 14 1 28 19 11 31 92 103 decma2c
 |-  ( ( ; 5 2 x. N ) + ; 6 8 ) = ; ; ; ; 6 5 5 3 6
105 2exp16
 |-  ( 2 ^ ; 1 6 ) = ; ; ; ; 6 5 5 3 6
106 eqid
 |-  ( 2 ^ 8 ) = ( 2 ^ 8 )
107 eqid
 |-  ( ( 2 ^ 8 ) x. ( 2 ^ 8 ) ) = ( ( 2 ^ 8 ) x. ( 2 ^ 8 ) )
108 3 14 26 106 107 numexp2x
 |-  ( 2 ^ ; 1 6 ) = ( ( 2 ^ 8 ) x. ( 2 ^ 8 ) )
109 104 105 108 3eqtr2i
 |-  ( ( ; 5 2 x. N ) + ; 6 8 ) = ( ( 2 ^ 8 ) x. ( 2 ^ 8 ) )
110 9 10 14 20 21 15 22 26 109 mod2xi
 |-  ( ( 2 ^ ; 1 6 ) mod N ) = ( ; 6 8 mod N )
111 6p1e7
 |-  ( 6 + 1 ) = 7
112 eqid
 |-  ; 1 6 = ; 1 6
113 2 11 111 112 decsuc
 |-  ( ; 1 6 + 1 ) = ; 1 7
114 18 nn0cni
 |-  ; ; 1 3 6 e. CC
115 114 addid2i
 |-  ( 0 + ; ; 1 3 6 ) = ; ; 1 3 6
116 9 nncni
 |-  N e. CC
117 116 mul02i
 |-  ( 0 x. N ) = 0
118 117 oveq1i
 |-  ( ( 0 x. N ) + ; ; 1 3 6 ) = ( 0 + ; ; 1 3 6 )
119 6t2e12
 |-  ( 6 x. 2 ) = ; 1 2
120 2 3 52 119 decsuc
 |-  ( ( 6 x. 2 ) + 1 ) = ; 1 3
121 3 11 14 28 11 2 120 25 decmul1c
 |-  ( ; 6 8 x. 2 ) = ; ; 1 3 6
122 115 118 121 3eqtr4i
 |-  ( ( 0 x. N ) + ; ; 1 3 6 ) = ( ; 6 8 x. 2 )
123 9 10 12 13 15 18 110 113 122 modxp1i
 |-  ( ( 2 ^ ; 1 7 ) mod N ) = ( ; ; 1 3 6 mod N )