Metamath Proof Explorer


Theorem 6p5e11

Description: 6 + 5 = 11. (Contributed by Mario Carneiro, 19-Apr-2015) (Revised by AV, 6-Sep-2021)

Ref Expression
Assertion 6p5e11
|- ( 6 + 5 ) = ; 1 1

Proof

Step Hyp Ref Expression
1 6nn0
 |-  6 e. NN0
2 4nn0
 |-  4 e. NN0
3 0nn0
 |-  0 e. NN0
4 df-5
 |-  5 = ( 4 + 1 )
5 1e0p1
 |-  1 = ( 0 + 1 )
6 6p4e10
 |-  ( 6 + 4 ) = ; 1 0
7 1 2 3 4 5 6 6p5lem
 |-  ( 6 + 5 ) = ; 1 1