Step |
Hyp |
Ref |
Expression |
1 |
|
1259prm.1 |
|- N = ; ; ; 1 2 5 9 |
2 |
|
1nn0 |
|- 1 e. NN0 |
3 |
|
2nn0 |
|- 2 e. NN0 |
4 |
2 3
|
deccl |
|- ; 1 2 e. NN0 |
5 |
|
5nn0 |
|- 5 e. NN0 |
6 |
4 5
|
deccl |
|- ; ; 1 2 5 e. NN0 |
7 |
|
9nn |
|- 9 e. NN |
8 |
6 7
|
decnncl |
|- ; ; ; 1 2 5 9 e. NN |
9 |
1 8
|
eqeltri |
|- N e. NN |
10 |
|
2nn |
|- 2 e. NN |
11 |
|
7nn0 |
|- 7 e. NN0 |
12 |
2 11
|
deccl |
|- ; 1 7 e. NN0 |
13 |
|
4nn0 |
|- 4 e. NN0 |
14 |
2 13
|
deccl |
|- ; 1 4 e. NN0 |
15 |
14
|
nn0zi |
|- ; 1 4 e. ZZ |
16 |
|
3nn0 |
|- 3 e. NN0 |
17 |
2 16
|
deccl |
|- ; 1 3 e. NN0 |
18 |
|
6nn0 |
|- 6 e. NN0 |
19 |
17 18
|
deccl |
|- ; ; 1 3 6 e. NN0 |
20 |
|
8nn0 |
|- 8 e. NN0 |
21 |
20 11
|
deccl |
|- ; 8 7 e. NN0 |
22 |
|
0nn0 |
|- 0 e. NN0 |
23 |
21 22
|
deccl |
|- ; ; 8 7 0 e. NN0 |
24 |
1
|
1259lem1 |
|- ( ( 2 ^ ; 1 7 ) mod N ) = ( ; ; 1 3 6 mod N ) |
25 |
|
eqid |
|- ; 1 7 = ; 1 7 |
26 |
|
2cn |
|- 2 e. CC |
27 |
26
|
mulridi |
|- ( 2 x. 1 ) = 2 |
28 |
27
|
oveq1i |
|- ( ( 2 x. 1 ) + 1 ) = ( 2 + 1 ) |
29 |
|
2p1e3 |
|- ( 2 + 1 ) = 3 |
30 |
28 29
|
eqtri |
|- ( ( 2 x. 1 ) + 1 ) = 3 |
31 |
|
7cn |
|- 7 e. CC |
32 |
|
7t2e14 |
|- ( 7 x. 2 ) = ; 1 4 |
33 |
31 26 32
|
mulcomli |
|- ( 2 x. 7 ) = ; 1 4 |
34 |
3 2 11 25 13 2 30 33
|
decmul2c |
|- ( 2 x. ; 1 7 ) = ; 3 4 |
35 |
|
9nn0 |
|- 9 e. NN0 |
36 |
|
eqid |
|- ; ; 8 7 0 = ; ; 8 7 0 |
37 |
|
eqid |
|- ; ; 1 2 5 = ; ; 1 2 5 |
38 |
|
eqid |
|- ; 8 7 = ; 8 7 |
39 |
|
eqid |
|- ; 1 2 = ; 1 2 |
40 |
|
8p1e9 |
|- ( 8 + 1 ) = 9 |
41 |
|
7p2e9 |
|- ( 7 + 2 ) = 9 |
42 |
20 11 2 3 38 39 40 41
|
decadd |
|- ( ; 8 7 + ; 1 2 ) = ; 9 9 |
43 |
|
9p7e16 |
|- ( 9 + 7 ) = ; 1 6 |
44 |
|
eqid |
|- ; 1 4 = ; 1 4 |
45 |
|
3cn |
|- 3 e. CC |
46 |
|
ax-1cn |
|- 1 e. CC |
47 |
|
3p1e4 |
|- ( 3 + 1 ) = 4 |
48 |
45 46 47
|
addcomli |
|- ( 1 + 3 ) = 4 |
49 |
13
|
dec0h |
|- 4 = ; 0 4 |
50 |
48 49
|
eqtri |
|- ( 1 + 3 ) = ; 0 4 |
51 |
46
|
mulridi |
|- ( 1 x. 1 ) = 1 |
52 |
|
00id |
|- ( 0 + 0 ) = 0 |
53 |
51 52
|
oveq12i |
|- ( ( 1 x. 1 ) + ( 0 + 0 ) ) = ( 1 + 0 ) |
54 |
46
|
addridi |
|- ( 1 + 0 ) = 1 |
55 |
53 54
|
eqtri |
|- ( ( 1 x. 1 ) + ( 0 + 0 ) ) = 1 |
56 |
|
4cn |
|- 4 e. CC |
57 |
56
|
mulridi |
|- ( 4 x. 1 ) = 4 |
58 |
57
|
oveq1i |
|- ( ( 4 x. 1 ) + 4 ) = ( 4 + 4 ) |
59 |
|
4p4e8 |
|- ( 4 + 4 ) = 8 |
60 |
20
|
dec0h |
|- 8 = ; 0 8 |
61 |
58 59 60
|
3eqtri |
|- ( ( 4 x. 1 ) + 4 ) = ; 0 8 |
62 |
2 13 22 13 44 50 2 20 22 55 61
|
decmac |
|- ( ( ; 1 4 x. 1 ) + ( 1 + 3 ) ) = ; 1 8 |
63 |
18
|
dec0h |
|- 6 = ; 0 6 |
64 |
26
|
mullidi |
|- ( 1 x. 2 ) = 2 |
65 |
46
|
addlidi |
|- ( 0 + 1 ) = 1 |
66 |
64 65
|
oveq12i |
|- ( ( 1 x. 2 ) + ( 0 + 1 ) ) = ( 2 + 1 ) |
67 |
66 29
|
eqtri |
|- ( ( 1 x. 2 ) + ( 0 + 1 ) ) = 3 |
68 |
|
4t2e8 |
|- ( 4 x. 2 ) = 8 |
69 |
68
|
oveq1i |
|- ( ( 4 x. 2 ) + 6 ) = ( 8 + 6 ) |
70 |
|
8p6e14 |
|- ( 8 + 6 ) = ; 1 4 |
71 |
69 70
|
eqtri |
|- ( ( 4 x. 2 ) + 6 ) = ; 1 4 |
72 |
2 13 22 18 44 63 3 13 2 67 71
|
decmac |
|- ( ( ; 1 4 x. 2 ) + 6 ) = ; 3 4 |
73 |
2 3 2 18 39 43 14 13 16 62 72
|
decma2c |
|- ( ( ; 1 4 x. ; 1 2 ) + ( 9 + 7 ) ) = ; ; 1 8 4 |
74 |
35
|
dec0h |
|- 9 = ; 0 9 |
75 |
|
5cn |
|- 5 e. CC |
76 |
75
|
mullidi |
|- ( 1 x. 5 ) = 5 |
77 |
26
|
addlidi |
|- ( 0 + 2 ) = 2 |
78 |
76 77
|
oveq12i |
|- ( ( 1 x. 5 ) + ( 0 + 2 ) ) = ( 5 + 2 ) |
79 |
|
5p2e7 |
|- ( 5 + 2 ) = 7 |
80 |
78 79
|
eqtri |
|- ( ( 1 x. 5 ) + ( 0 + 2 ) ) = 7 |
81 |
|
5t4e20 |
|- ( 5 x. 4 ) = ; 2 0 |
82 |
75 56 81
|
mulcomli |
|- ( 4 x. 5 ) = ; 2 0 |
83 |
|
9cn |
|- 9 e. CC |
84 |
83
|
addlidi |
|- ( 0 + 9 ) = 9 |
85 |
3 22 35 82 84
|
decaddi |
|- ( ( 4 x. 5 ) + 9 ) = ; 2 9 |
86 |
2 13 22 35 44 74 5 35 3 80 85
|
decmac |
|- ( ( ; 1 4 x. 5 ) + 9 ) = ; 7 9 |
87 |
4 5 35 35 37 42 14 35 11 73 86
|
decma2c |
|- ( ( ; 1 4 x. ; ; 1 2 5 ) + ( ; 8 7 + ; 1 2 ) ) = ; ; ; 1 8 4 9 |
88 |
83
|
mullidi |
|- ( 1 x. 9 ) = 9 |
89 |
88
|
oveq1i |
|- ( ( 1 x. 9 ) + 3 ) = ( 9 + 3 ) |
90 |
|
9p3e12 |
|- ( 9 + 3 ) = ; 1 2 |
91 |
89 90
|
eqtri |
|- ( ( 1 x. 9 ) + 3 ) = ; 1 2 |
92 |
|
9t4e36 |
|- ( 9 x. 4 ) = ; 3 6 |
93 |
83 56 92
|
mulcomli |
|- ( 4 x. 9 ) = ; 3 6 |
94 |
35 2 13 44 18 16 91 93
|
decmul1c |
|- ( ; 1 4 x. 9 ) = ; ; 1 2 6 |
95 |
94
|
oveq1i |
|- ( ( ; 1 4 x. 9 ) + 0 ) = ( ; ; 1 2 6 + 0 ) |
96 |
4 18
|
deccl |
|- ; ; 1 2 6 e. NN0 |
97 |
96
|
nn0cni |
|- ; ; 1 2 6 e. CC |
98 |
97
|
addridi |
|- ( ; ; 1 2 6 + 0 ) = ; ; 1 2 6 |
99 |
95 98
|
eqtri |
|- ( ( ; 1 4 x. 9 ) + 0 ) = ; ; 1 2 6 |
100 |
6 35 21 22 1 36 14 18 4 87 99
|
decma2c |
|- ( ( ; 1 4 x. N ) + ; ; 8 7 0 ) = ; ; ; ; 1 8 4 9 6 |
101 |
|
eqid |
|- ; ; 1 3 6 = ; ; 1 3 6 |
102 |
20 2
|
deccl |
|- ; 8 1 e. NN0 |
103 |
|
eqid |
|- ; 1 3 = ; 1 3 |
104 |
|
eqid |
|- ; 8 1 = ; 8 1 |
105 |
13 22
|
deccl |
|- ; 4 0 e. NN0 |
106 |
|
eqid |
|- ; 4 0 = ; 4 0 |
107 |
56
|
addlidi |
|- ( 0 + 4 ) = 4 |
108 |
|
8cn |
|- 8 e. CC |
109 |
108
|
addridi |
|- ( 8 + 0 ) = 8 |
110 |
22 20 13 22 60 106 107 109
|
decadd |
|- ( 8 + ; 4 0 ) = ; 4 8 |
111 |
|
4p1e5 |
|- ( 4 + 1 ) = 5 |
112 |
5
|
dec0h |
|- 5 = ; 0 5 |
113 |
111 112
|
eqtri |
|- ( 4 + 1 ) = ; 0 5 |
114 |
45
|
mulridi |
|- ( 3 x. 1 ) = 3 |
115 |
114
|
oveq1i |
|- ( ( 3 x. 1 ) + 5 ) = ( 3 + 5 ) |
116 |
|
5p3e8 |
|- ( 5 + 3 ) = 8 |
117 |
75 45 116
|
addcomli |
|- ( 3 + 5 ) = 8 |
118 |
115 117 60
|
3eqtri |
|- ( ( 3 x. 1 ) + 5 ) = ; 0 8 |
119 |
2 16 22 5 103 113 2 20 22 55 118
|
decmac |
|- ( ( ; 1 3 x. 1 ) + ( 4 + 1 ) ) = ; 1 8 |
120 |
|
6cn |
|- 6 e. CC |
121 |
120
|
mulridi |
|- ( 6 x. 1 ) = 6 |
122 |
121
|
oveq1i |
|- ( ( 6 x. 1 ) + 8 ) = ( 6 + 8 ) |
123 |
108 120 70
|
addcomli |
|- ( 6 + 8 ) = ; 1 4 |
124 |
122 123
|
eqtri |
|- ( ( 6 x. 1 ) + 8 ) = ; 1 4 |
125 |
17 18 13 20 101 110 2 13 2 119 124
|
decmac |
|- ( ( ; ; 1 3 6 x. 1 ) + ( 8 + ; 4 0 ) ) = ; ; 1 8 4 |
126 |
2
|
dec0h |
|- 1 = ; 0 1 |
127 |
65 126
|
eqtri |
|- ( 0 + 1 ) = ; 0 1 |
128 |
45
|
mullidi |
|- ( 1 x. 3 ) = 3 |
129 |
128 65
|
oveq12i |
|- ( ( 1 x. 3 ) + ( 0 + 1 ) ) = ( 3 + 1 ) |
130 |
129 47
|
eqtri |
|- ( ( 1 x. 3 ) + ( 0 + 1 ) ) = 4 |
131 |
|
3t3e9 |
|- ( 3 x. 3 ) = 9 |
132 |
131
|
oveq1i |
|- ( ( 3 x. 3 ) + 1 ) = ( 9 + 1 ) |
133 |
|
9p1e10 |
|- ( 9 + 1 ) = ; 1 0 |
134 |
132 133
|
eqtri |
|- ( ( 3 x. 3 ) + 1 ) = ; 1 0 |
135 |
2 16 22 2 103 127 16 22 2 130 134
|
decmac |
|- ( ( ; 1 3 x. 3 ) + ( 0 + 1 ) ) = ; 4 0 |
136 |
|
6t3e18 |
|- ( 6 x. 3 ) = ; 1 8 |
137 |
2 20 2 136 40
|
decaddi |
|- ( ( 6 x. 3 ) + 1 ) = ; 1 9 |
138 |
17 18 22 2 101 126 16 35 2 135 137
|
decmac |
|- ( ( ; ; 1 3 6 x. 3 ) + 1 ) = ; ; 4 0 9 |
139 |
2 16 20 2 103 104 19 35 105 125 138
|
decma2c |
|- ( ( ; ; 1 3 6 x. ; 1 3 ) + ; 8 1 ) = ; ; ; 1 8 4 9 |
140 |
16
|
dec0h |
|- 3 = ; 0 3 |
141 |
120
|
mullidi |
|- ( 1 x. 6 ) = 6 |
142 |
141 77
|
oveq12i |
|- ( ( 1 x. 6 ) + ( 0 + 2 ) ) = ( 6 + 2 ) |
143 |
|
6p2e8 |
|- ( 6 + 2 ) = 8 |
144 |
142 143
|
eqtri |
|- ( ( 1 x. 6 ) + ( 0 + 2 ) ) = 8 |
145 |
120 45 136
|
mulcomli |
|- ( 3 x. 6 ) = ; 1 8 |
146 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
147 |
|
8p3e11 |
|- ( 8 + 3 ) = ; 1 1 |
148 |
2 20 16 145 146 2 147
|
decaddci |
|- ( ( 3 x. 6 ) + 3 ) = ; 2 1 |
149 |
2 16 22 16 103 140 18 2 3 144 148
|
decmac |
|- ( ( ; 1 3 x. 6 ) + 3 ) = ; 8 1 |
150 |
|
6t6e36 |
|- ( 6 x. 6 ) = ; 3 6 |
151 |
18 17 18 101 18 16 149 150
|
decmul1c |
|- ( ; ; 1 3 6 x. 6 ) = ; ; 8 1 6 |
152 |
19 17 18 101 18 102 139 151
|
decmul2c |
|- ( ; ; 1 3 6 x. ; ; 1 3 6 ) = ; ; ; ; 1 8 4 9 6 |
153 |
100 152
|
eqtr4i |
|- ( ( ; 1 4 x. N ) + ; ; 8 7 0 ) = ( ; ; 1 3 6 x. ; ; 1 3 6 ) |
154 |
9 10 12 15 19 23 24 34 153
|
mod2xi |
|- ( ( 2 ^ ; 3 4 ) mod N ) = ( ; ; 8 7 0 mod N ) |