Metamath Proof Explorer


Theorem 1259prm

Description: 1259 is a prime number. (Contributed by Mario Carneiro, 22-Feb-2014) (Proof shortened by Mario Carneiro, 20-Apr-2015)

Ref Expression
Hypothesis 1259prm.1 𝑁 = 1 2 5 9
Assertion 1259prm 𝑁 ∈ ℙ

Proof

Step Hyp Ref Expression
1 1259prm.1 𝑁 = 1 2 5 9
2 37prm 3 7 ∈ ℙ
3 3nn0 3 ∈ ℕ0
4 4nn 4 ∈ ℕ
5 3 4 decnncl 3 4 ∈ ℕ
6 1nn0 1 ∈ ℕ0
7 2nn0 2 ∈ ℕ0
8 6 7 deccl 1 2 ∈ ℕ0
9 5nn0 5 ∈ ℕ0
10 8 9 deccl 1 2 5 ∈ ℕ0
11 8nn0 8 ∈ ℕ0
12 10 11 deccl 1 2 5 8 ∈ ℕ0
13 12 nn0cni 1 2 5 8 ∈ ℂ
14 ax-1cn 1 ∈ ℂ
15 eqid 1 2 5 8 = 1 2 5 8
16 8p1e9 ( 8 + 1 ) = 9
17 10 11 6 15 16 decaddi ( 1 2 5 8 + 1 ) = 1 2 5 9
18 1 17 eqtr4i 𝑁 = ( 1 2 5 8 + 1 )
19 13 14 18 mvrraddi ( 𝑁 − 1 ) = 1 2 5 8
20 4nn0 4 ∈ ℕ0
21 3 20 deccl 3 4 ∈ ℕ0
22 7nn0 7 ∈ ℕ0
23 eqid 3 7 = 3 7
24 7 3 deccl 2 3 ∈ ℕ0
25 eqid 3 4 = 3 4
26 eqid 2 3 = 2 3
27 3t3e9 ( 3 · 3 ) = 9
28 2p1e3 ( 2 + 1 ) = 3
29 27 28 oveq12i ( ( 3 · 3 ) + ( 2 + 1 ) ) = ( 9 + 3 )
30 9p3e12 ( 9 + 3 ) = 1 2
31 29 30 eqtri ( ( 3 · 3 ) + ( 2 + 1 ) ) = 1 2
32 4t3e12 ( 4 · 3 ) = 1 2
33 3cn 3 ∈ ℂ
34 2cn 2 ∈ ℂ
35 3p2e5 ( 3 + 2 ) = 5
36 33 34 35 addcomli ( 2 + 3 ) = 5
37 6 7 3 32 36 decaddi ( ( 4 · 3 ) + 3 ) = 1 5
38 3 20 7 3 25 26 3 9 6 31 37 decmac ( ( 3 4 · 3 ) + 2 3 ) = 1 2 5
39 7cn 7 ∈ ℂ
40 7t3e21 ( 7 · 3 ) = 2 1
41 39 33 40 mulcomli ( 3 · 7 ) = 2 1
42 1p2e3 ( 1 + 2 ) = 3
43 7 6 7 41 42 decaddi ( ( 3 · 7 ) + 2 ) = 2 3
44 4cn 4 ∈ ℂ
45 7t4e28 ( 7 · 4 ) = 2 8
46 39 44 45 mulcomli ( 4 · 7 ) = 2 8
47 22 3 20 25 11 7 43 46 decmul1c ( 3 4 · 7 ) = 2 3 8
48 21 3 22 23 11 24 38 47 decmul2c ( 3 4 · 3 7 ) = 1 2 5 8
49 19 48 eqtr4i ( 𝑁 − 1 ) = ( 3 4 · 3 7 )
50 9nn0 9 ∈ ℕ0
51 10 50 deccl 1 2 5 9 ∈ ℕ0
52 1 51 eqeltri 𝑁 ∈ ℕ0
53 52 nn0cni 𝑁 ∈ ℂ
54 npcan ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 )
55 53 14 54 mp2an ( ( 𝑁 − 1 ) + 1 ) = 𝑁
56 55 eqcomi 𝑁 = ( ( 𝑁 − 1 ) + 1 )
57 1nn 1 ∈ ℕ
58 2nn 2 ∈ ℕ
59 3 22 deccl 3 7 ∈ ℕ0
60 59 numexp1 ( 3 7 ↑ 1 ) = 3 7
61 60 oveq2i ( 3 4 · ( 3 7 ↑ 1 ) ) = ( 3 4 · 3 7 )
62 49 61 eqtr4i ( 𝑁 − 1 ) = ( 3 4 · ( 3 7 ↑ 1 ) )
63 7nn 7 ∈ ℕ
64 4lt7 4 < 7
65 3 20 63 64 declt 3 4 < 3 7
66 65 60 breqtrri 3 4 < ( 3 7 ↑ 1 )
67 1 1259lem4 ( ( 2 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = ( 1 mod 𝑁 )
68 1 1259lem5 ( ( ( 2 ↑ 3 4 ) − 1 ) gcd 𝑁 ) = 1
69 2 5 49 56 5 57 58 62 66 67 68 pockthi 𝑁 ∈ ℙ