Description: 1259 is a prime number. (Contributed by Mario Carneiro, 22-Feb-2014) (Proof shortened by Mario Carneiro, 20-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 1259prm.1 | ⊢ 𝑁 = ; ; ; 1 2 5 9 | |
| Assertion | 1259prm | ⊢ 𝑁 ∈ ℙ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1259prm.1 | ⊢ 𝑁 = ; ; ; 1 2 5 9 | |
| 2 | 37prm | ⊢ ; 3 7 ∈ ℙ | |
| 3 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
| 4 | 4nn | ⊢ 4 ∈ ℕ | |
| 5 | 3 4 | decnncl | ⊢ ; 3 4 ∈ ℕ |
| 6 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 7 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 8 | 6 7 | deccl | ⊢ ; 1 2 ∈ ℕ0 |
| 9 | 5nn0 | ⊢ 5 ∈ ℕ0 | |
| 10 | 8 9 | deccl | ⊢ ; ; 1 2 5 ∈ ℕ0 |
| 11 | 8nn0 | ⊢ 8 ∈ ℕ0 | |
| 12 | 10 11 | deccl | ⊢ ; ; ; 1 2 5 8 ∈ ℕ0 |
| 13 | 12 | nn0cni | ⊢ ; ; ; 1 2 5 8 ∈ ℂ |
| 14 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 15 | eqid | ⊢ ; ; ; 1 2 5 8 = ; ; ; 1 2 5 8 | |
| 16 | 8p1e9 | ⊢ ( 8 + 1 ) = 9 | |
| 17 | 10 11 6 15 16 | decaddi | ⊢ ( ; ; ; 1 2 5 8 + 1 ) = ; ; ; 1 2 5 9 |
| 18 | 1 17 | eqtr4i | ⊢ 𝑁 = ( ; ; ; 1 2 5 8 + 1 ) |
| 19 | 13 14 18 | mvrraddi | ⊢ ( 𝑁 − 1 ) = ; ; ; 1 2 5 8 |
| 20 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
| 21 | 3 20 | deccl | ⊢ ; 3 4 ∈ ℕ0 |
| 22 | 7nn0 | ⊢ 7 ∈ ℕ0 | |
| 23 | eqid | ⊢ ; 3 7 = ; 3 7 | |
| 24 | 7 3 | deccl | ⊢ ; 2 3 ∈ ℕ0 |
| 25 | eqid | ⊢ ; 3 4 = ; 3 4 | |
| 26 | eqid | ⊢ ; 2 3 = ; 2 3 | |
| 27 | 3t3e9 | ⊢ ( 3 · 3 ) = 9 | |
| 28 | 2p1e3 | ⊢ ( 2 + 1 ) = 3 | |
| 29 | 27 28 | oveq12i | ⊢ ( ( 3 · 3 ) + ( 2 + 1 ) ) = ( 9 + 3 ) |
| 30 | 9p3e12 | ⊢ ( 9 + 3 ) = ; 1 2 | |
| 31 | 29 30 | eqtri | ⊢ ( ( 3 · 3 ) + ( 2 + 1 ) ) = ; 1 2 |
| 32 | 4t3e12 | ⊢ ( 4 · 3 ) = ; 1 2 | |
| 33 | 3cn | ⊢ 3 ∈ ℂ | |
| 34 | 2cn | ⊢ 2 ∈ ℂ | |
| 35 | 3p2e5 | ⊢ ( 3 + 2 ) = 5 | |
| 36 | 33 34 35 | addcomli | ⊢ ( 2 + 3 ) = 5 |
| 37 | 6 7 3 32 36 | decaddi | ⊢ ( ( 4 · 3 ) + 3 ) = ; 1 5 |
| 38 | 3 20 7 3 25 26 3 9 6 31 37 | decmac | ⊢ ( ( ; 3 4 · 3 ) + ; 2 3 ) = ; ; 1 2 5 |
| 39 | 7cn | ⊢ 7 ∈ ℂ | |
| 40 | 7t3e21 | ⊢ ( 7 · 3 ) = ; 2 1 | |
| 41 | 39 33 40 | mulcomli | ⊢ ( 3 · 7 ) = ; 2 1 |
| 42 | 1p2e3 | ⊢ ( 1 + 2 ) = 3 | |
| 43 | 7 6 7 41 42 | decaddi | ⊢ ( ( 3 · 7 ) + 2 ) = ; 2 3 |
| 44 | 4cn | ⊢ 4 ∈ ℂ | |
| 45 | 7t4e28 | ⊢ ( 7 · 4 ) = ; 2 8 | |
| 46 | 39 44 45 | mulcomli | ⊢ ( 4 · 7 ) = ; 2 8 |
| 47 | 22 3 20 25 11 7 43 46 | decmul1c | ⊢ ( ; 3 4 · 7 ) = ; ; 2 3 8 |
| 48 | 21 3 22 23 11 24 38 47 | decmul2c | ⊢ ( ; 3 4 · ; 3 7 ) = ; ; ; 1 2 5 8 |
| 49 | 19 48 | eqtr4i | ⊢ ( 𝑁 − 1 ) = ( ; 3 4 · ; 3 7 ) |
| 50 | 9nn0 | ⊢ 9 ∈ ℕ0 | |
| 51 | 10 50 | deccl | ⊢ ; ; ; 1 2 5 9 ∈ ℕ0 |
| 52 | 1 51 | eqeltri | ⊢ 𝑁 ∈ ℕ0 |
| 53 | 52 | nn0cni | ⊢ 𝑁 ∈ ℂ |
| 54 | npcan | ⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) | |
| 55 | 53 14 54 | mp2an | ⊢ ( ( 𝑁 − 1 ) + 1 ) = 𝑁 |
| 56 | 55 | eqcomi | ⊢ 𝑁 = ( ( 𝑁 − 1 ) + 1 ) |
| 57 | 1nn | ⊢ 1 ∈ ℕ | |
| 58 | 2nn | ⊢ 2 ∈ ℕ | |
| 59 | 3 22 | deccl | ⊢ ; 3 7 ∈ ℕ0 |
| 60 | 59 | numexp1 | ⊢ ( ; 3 7 ↑ 1 ) = ; 3 7 |
| 61 | 60 | oveq2i | ⊢ ( ; 3 4 · ( ; 3 7 ↑ 1 ) ) = ( ; 3 4 · ; 3 7 ) |
| 62 | 49 61 | eqtr4i | ⊢ ( 𝑁 − 1 ) = ( ; 3 4 · ( ; 3 7 ↑ 1 ) ) |
| 63 | 7nn | ⊢ 7 ∈ ℕ | |
| 64 | 4lt7 | ⊢ 4 < 7 | |
| 65 | 3 20 63 64 | declt | ⊢ ; 3 4 < ; 3 7 |
| 66 | 65 60 | breqtrri | ⊢ ; 3 4 < ( ; 3 7 ↑ 1 ) |
| 67 | 1 | 1259lem4 | ⊢ ( ( 2 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = ( 1 mod 𝑁 ) |
| 68 | 1 | 1259lem5 | ⊢ ( ( ( 2 ↑ ; 3 4 ) − 1 ) gcd 𝑁 ) = 1 |
| 69 | 2 5 49 56 5 57 58 62 66 67 68 | pockthi | ⊢ 𝑁 ∈ ℙ |