Description: Lemma for 2503prm . Calculate a power mod. In decimal, we calculate 2 ^ 1 8 = 5 1 2 ^ 2 = 1 0 4 N + 1 8 3 2 == 1 8 3 2 . (Contributed by Mario Carneiro, 3-Mar-2014) (Revised by Mario Carneiro, 20-Apr-2015) (Proof shortened by AV, 16-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 2503prm.1 | ⊢ 𝑁 = ; ; ; 2 5 0 3 | |
| Assertion | 2503lem1 | ⊢ ( ( 2 ↑ ; 1 8 ) mod 𝑁 ) = ( ; ; ; 1 8 3 2 mod 𝑁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2503prm.1 | ⊢ 𝑁 = ; ; ; 2 5 0 3 | |
| 2 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 3 | 5nn0 | ⊢ 5 ∈ ℕ0 | |
| 4 | 2 3 | deccl | ⊢ ; 2 5 ∈ ℕ0 |
| 5 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 6 | 4 5 | deccl | ⊢ ; ; 2 5 0 ∈ ℕ0 |
| 7 | 3nn | ⊢ 3 ∈ ℕ | |
| 8 | 6 7 | decnncl | ⊢ ; ; ; 2 5 0 3 ∈ ℕ |
| 9 | 1 8 | eqeltri | ⊢ 𝑁 ∈ ℕ |
| 10 | 2nn | ⊢ 2 ∈ ℕ | |
| 11 | 9nn0 | ⊢ 9 ∈ ℕ0 | |
| 12 | 10nn0 | ⊢ ; 1 0 ∈ ℕ0 | |
| 13 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
| 14 | 12 13 | deccl | ⊢ ; ; 1 0 4 ∈ ℕ0 |
| 15 | 14 | nn0zi | ⊢ ; ; 1 0 4 ∈ ℤ |
| 16 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 17 | 3 16 | deccl | ⊢ ; 5 1 ∈ ℕ0 |
| 18 | 17 2 | deccl | ⊢ ; ; 5 1 2 ∈ ℕ0 |
| 19 | 8nn0 | ⊢ 8 ∈ ℕ0 | |
| 20 | 16 19 | deccl | ⊢ ; 1 8 ∈ ℕ0 |
| 21 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
| 22 | 20 21 | deccl | ⊢ ; ; 1 8 3 ∈ ℕ0 |
| 23 | 22 2 | deccl | ⊢ ; ; ; 1 8 3 2 ∈ ℕ0 |
| 24 | 8p1e9 | ⊢ ( 8 + 1 ) = 9 | |
| 25 | 6nn0 | ⊢ 6 ∈ ℕ0 | |
| 26 | 2exp8 | ⊢ ( 2 ↑ 8 ) = ; ; 2 5 6 | |
| 27 | eqid | ⊢ ; 2 5 = ; 2 5 | |
| 28 | 16 | dec0h | ⊢ 1 = ; 0 1 |
| 29 | 2t2e4 | ⊢ ( 2 · 2 ) = 4 | |
| 30 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 31 | 30 | addlidi | ⊢ ( 0 + 1 ) = 1 |
| 32 | 29 31 | oveq12i | ⊢ ( ( 2 · 2 ) + ( 0 + 1 ) ) = ( 4 + 1 ) |
| 33 | 4p1e5 | ⊢ ( 4 + 1 ) = 5 | |
| 34 | 32 33 | eqtri | ⊢ ( ( 2 · 2 ) + ( 0 + 1 ) ) = 5 |
| 35 | 5t2e10 | ⊢ ( 5 · 2 ) = ; 1 0 | |
| 36 | 16 5 31 35 | decsuc | ⊢ ( ( 5 · 2 ) + 1 ) = ; 1 1 |
| 37 | 2 3 5 16 27 28 2 16 16 34 36 | decmac | ⊢ ( ( ; 2 5 · 2 ) + 1 ) = ; 5 1 |
| 38 | 6t2e12 | ⊢ ( 6 · 2 ) = ; 1 2 | |
| 39 | 2 4 25 26 2 16 37 38 | decmul1c | ⊢ ( ( 2 ↑ 8 ) · 2 ) = ; ; 5 1 2 |
| 40 | 2 19 24 39 | numexpp1 | ⊢ ( 2 ↑ 9 ) = ; ; 5 1 2 |
| 41 | 40 | oveq1i | ⊢ ( ( 2 ↑ 9 ) mod 𝑁 ) = ( ; ; 5 1 2 mod 𝑁 ) |
| 42 | 9cn | ⊢ 9 ∈ ℂ | |
| 43 | 2cn | ⊢ 2 ∈ ℂ | |
| 44 | 9t2e18 | ⊢ ( 9 · 2 ) = ; 1 8 | |
| 45 | 42 43 44 | mulcomli | ⊢ ( 2 · 9 ) = ; 1 8 |
| 46 | eqid | ⊢ ; ; ; 1 8 3 2 = ; ; ; 1 8 3 2 | |
| 47 | 21 16 | deccl | ⊢ ; 3 1 ∈ ℕ0 |
| 48 | 2 16 | deccl | ⊢ ; 2 1 ∈ ℕ0 |
| 49 | eqid | ⊢ ; ; 2 5 0 = ; ; 2 5 0 | |
| 50 | eqid | ⊢ ; ; 1 8 3 = ; ; 1 8 3 | |
| 51 | eqid | ⊢ ; 3 1 = ; 3 1 | |
| 52 | eqid | ⊢ ; 1 8 = ; 1 8 | |
| 53 | 1p1e2 | ⊢ ( 1 + 1 ) = 2 | |
| 54 | 8p3e11 | ⊢ ( 8 + 3 ) = ; 1 1 | |
| 55 | 16 19 21 52 53 16 54 | decaddci | ⊢ ( ; 1 8 + 3 ) = ; 2 1 |
| 56 | 3p1e4 | ⊢ ( 3 + 1 ) = 4 | |
| 57 | 20 21 21 16 50 51 55 56 | decadd | ⊢ ( ; ; 1 8 3 + ; 3 1 ) = ; ; 2 1 4 |
| 58 | 48 | nn0cni | ⊢ ; 2 1 ∈ ℂ |
| 59 | 58 | addridi | ⊢ ( ; 2 1 + 0 ) = ; 2 1 |
| 60 | 3 2 | deccl | ⊢ ; 5 2 ∈ ℕ0 |
| 61 | eqid | ⊢ ; ; 1 0 4 = ; ; 1 0 4 | |
| 62 | 60 | nn0cni | ⊢ ; 5 2 ∈ ℂ |
| 63 | eqid | ⊢ ; 5 2 = ; 5 2 | |
| 64 | 2p2e4 | ⊢ ( 2 + 2 ) = 4 | |
| 65 | 3 2 2 63 64 | decaddi | ⊢ ( ; 5 2 + 2 ) = ; 5 4 |
| 66 | 62 43 65 | addcomli | ⊢ ( 2 + ; 5 2 ) = ; 5 4 |
| 67 | 2 | dec0u | ⊢ ( ; 1 0 · 2 ) = ; 2 0 |
| 68 | 5p1e6 | ⊢ ( 5 + 1 ) = 6 | |
| 69 | 67 68 | oveq12i | ⊢ ( ( ; 1 0 · 2 ) + ( 5 + 1 ) ) = ( ; 2 0 + 6 ) |
| 70 | eqid | ⊢ ; 2 0 = ; 2 0 | |
| 71 | 6cn | ⊢ 6 ∈ ℂ | |
| 72 | 71 | addlidi | ⊢ ( 0 + 6 ) = 6 |
| 73 | 2 5 25 70 72 | decaddi | ⊢ ( ; 2 0 + 6 ) = ; 2 6 |
| 74 | 69 73 | eqtri | ⊢ ( ( ; 1 0 · 2 ) + ( 5 + 1 ) ) = ; 2 6 |
| 75 | 4t2e8 | ⊢ ( 4 · 2 ) = 8 | |
| 76 | 75 | oveq1i | ⊢ ( ( 4 · 2 ) + 4 ) = ( 8 + 4 ) |
| 77 | 8p4e12 | ⊢ ( 8 + 4 ) = ; 1 2 | |
| 78 | 76 77 | eqtri | ⊢ ( ( 4 · 2 ) + 4 ) = ; 1 2 |
| 79 | 12 13 3 13 61 66 2 2 16 74 78 | decmac | ⊢ ( ( ; ; 1 0 4 · 2 ) + ( 2 + ; 5 2 ) ) = ; ; 2 6 2 |
| 80 | 3 | dec0u | ⊢ ( ; 1 0 · 5 ) = ; 5 0 |
| 81 | 43 | addlidi | ⊢ ( 0 + 2 ) = 2 |
| 82 | 80 81 | oveq12i | ⊢ ( ( ; 1 0 · 5 ) + ( 0 + 2 ) ) = ( ; 5 0 + 2 ) |
| 83 | eqid | ⊢ ; 5 0 = ; 5 0 | |
| 84 | 3 5 2 83 81 | decaddi | ⊢ ( ; 5 0 + 2 ) = ; 5 2 |
| 85 | 82 84 | eqtri | ⊢ ( ( ; 1 0 · 5 ) + ( 0 + 2 ) ) = ; 5 2 |
| 86 | 5cn | ⊢ 5 ∈ ℂ | |
| 87 | 4cn | ⊢ 4 ∈ ℂ | |
| 88 | 5t4e20 | ⊢ ( 5 · 4 ) = ; 2 0 | |
| 89 | 86 87 88 | mulcomli | ⊢ ( 4 · 5 ) = ; 2 0 |
| 90 | 2 5 31 89 | decsuc | ⊢ ( ( 4 · 5 ) + 1 ) = ; 2 1 |
| 91 | 12 13 5 16 61 28 3 16 2 85 90 | decmac | ⊢ ( ( ; ; 1 0 4 · 5 ) + 1 ) = ; ; 5 2 1 |
| 92 | 2 3 2 16 27 59 14 16 60 79 91 | decma2c | ⊢ ( ( ; ; 1 0 4 · ; 2 5 ) + ( ; 2 1 + 0 ) ) = ; ; ; 2 6 2 1 |
| 93 | 14 | nn0cni | ⊢ ; ; 1 0 4 ∈ ℂ |
| 94 | 93 | mul01i | ⊢ ( ; ; 1 0 4 · 0 ) = 0 |
| 95 | 94 | oveq1i | ⊢ ( ( ; ; 1 0 4 · 0 ) + 4 ) = ( 0 + 4 ) |
| 96 | 87 | addlidi | ⊢ ( 0 + 4 ) = 4 |
| 97 | 13 | dec0h | ⊢ 4 = ; 0 4 |
| 98 | 95 96 97 | 3eqtri | ⊢ ( ( ; ; 1 0 4 · 0 ) + 4 ) = ; 0 4 |
| 99 | 4 5 48 13 49 57 14 13 5 92 98 | decma2c | ⊢ ( ( ; ; 1 0 4 · ; ; 2 5 0 ) + ( ; ; 1 8 3 + ; 3 1 ) ) = ; ; ; ; 2 6 2 1 4 |
| 100 | eqid | ⊢ ; 1 0 = ; 1 0 | |
| 101 | 3cn | ⊢ 3 ∈ ℂ | |
| 102 | 101 | mullidi | ⊢ ( 1 · 3 ) = 3 |
| 103 | 00id | ⊢ ( 0 + 0 ) = 0 | |
| 104 | 102 103 | oveq12i | ⊢ ( ( 1 · 3 ) + ( 0 + 0 ) ) = ( 3 + 0 ) |
| 105 | 101 | addridi | ⊢ ( 3 + 0 ) = 3 |
| 106 | 104 105 | eqtri | ⊢ ( ( 1 · 3 ) + ( 0 + 0 ) ) = 3 |
| 107 | 101 | mul02i | ⊢ ( 0 · 3 ) = 0 |
| 108 | 107 | oveq1i | ⊢ ( ( 0 · 3 ) + 1 ) = ( 0 + 1 ) |
| 109 | 108 31 28 | 3eqtri | ⊢ ( ( 0 · 3 ) + 1 ) = ; 0 1 |
| 110 | 16 5 5 16 100 28 21 16 5 106 109 | decmac | ⊢ ( ( ; 1 0 · 3 ) + 1 ) = ; 3 1 |
| 111 | 4t3e12 | ⊢ ( 4 · 3 ) = ; 1 2 | |
| 112 | 16 2 2 111 64 | decaddi | ⊢ ( ( 4 · 3 ) + 2 ) = ; 1 4 |
| 113 | 12 13 2 61 21 13 16 110 112 | decrmac | ⊢ ( ( ; ; 1 0 4 · 3 ) + 2 ) = ; ; 3 1 4 |
| 114 | 6 21 22 2 1 46 14 13 47 99 113 | decma2c | ⊢ ( ( ; ; 1 0 4 · 𝑁 ) + ; ; ; 1 8 3 2 ) = ; ; ; ; ; 2 6 2 1 4 4 |
| 115 | eqid | ⊢ ; ; 5 1 2 = ; ; 5 1 2 | |
| 116 | 12 2 | deccl | ⊢ ; ; 1 0 2 ∈ ℕ0 |
| 117 | eqid | ⊢ ; 5 1 = ; 5 1 | |
| 118 | eqid | ⊢ ; ; 1 0 2 = ; ; 1 0 2 | |
| 119 | 86 30 68 | addcomli | ⊢ ( 1 + 5 ) = 6 |
| 120 | 16 5 3 16 100 117 119 31 | decadd | ⊢ ( ; 1 0 + ; 5 1 ) = ; 6 1 |
| 121 | 7nn0 | ⊢ 7 ∈ ℕ0 | |
| 122 | 6p1e7 | ⊢ ( 6 + 1 ) = 7 | |
| 123 | 121 | dec0h | ⊢ 7 = ; 0 7 |
| 124 | 122 123 | eqtri | ⊢ ( 6 + 1 ) = ; 0 7 |
| 125 | 31 | oveq2i | ⊢ ( ( 5 · 5 ) + ( 0 + 1 ) ) = ( ( 5 · 5 ) + 1 ) |
| 126 | 5t5e25 | ⊢ ( 5 · 5 ) = ; 2 5 | |
| 127 | 2 3 68 126 | decsuc | ⊢ ( ( 5 · 5 ) + 1 ) = ; 2 6 |
| 128 | 125 127 | eqtri | ⊢ ( ( 5 · 5 ) + ( 0 + 1 ) ) = ; 2 6 |
| 129 | 86 | mullidi | ⊢ ( 1 · 5 ) = 5 |
| 130 | 129 | oveq1i | ⊢ ( ( 1 · 5 ) + 7 ) = ( 5 + 7 ) |
| 131 | 7cn | ⊢ 7 ∈ ℂ | |
| 132 | 7p5e12 | ⊢ ( 7 + 5 ) = ; 1 2 | |
| 133 | 131 86 132 | addcomli | ⊢ ( 5 + 7 ) = ; 1 2 |
| 134 | 130 133 | eqtri | ⊢ ( ( 1 · 5 ) + 7 ) = ; 1 2 |
| 135 | 3 16 5 121 117 124 3 2 16 128 134 | decmac | ⊢ ( ( ; 5 1 · 5 ) + ( 6 + 1 ) ) = ; ; 2 6 2 |
| 136 | 86 43 35 | mulcomli | ⊢ ( 2 · 5 ) = ; 1 0 |
| 137 | 16 5 31 136 | decsuc | ⊢ ( ( 2 · 5 ) + 1 ) = ; 1 1 |
| 138 | 17 2 25 16 115 120 3 16 16 135 137 | decmac | ⊢ ( ( ; ; 5 1 2 · 5 ) + ( ; 1 0 + ; 5 1 ) ) = ; ; ; 2 6 2 1 |
| 139 | 17 | nn0cni | ⊢ ; 5 1 ∈ ℂ |
| 140 | 139 | mulridi | ⊢ ( ; 5 1 · 1 ) = ; 5 1 |
| 141 | 43 | mulridi | ⊢ ( 2 · 1 ) = 2 |
| 142 | 141 | oveq1i | ⊢ ( ( 2 · 1 ) + 2 ) = ( 2 + 2 ) |
| 143 | 142 64 | eqtri | ⊢ ( ( 2 · 1 ) + 2 ) = 4 |
| 144 | 17 2 2 115 16 140 143 | decrmanc | ⊢ ( ( ; ; 5 1 2 · 1 ) + 2 ) = ; ; 5 1 4 |
| 145 | 3 16 12 2 117 118 18 13 17 138 144 | decma2c | ⊢ ( ( ; ; 5 1 2 · ; 5 1 ) + ; ; 1 0 2 ) = ; ; ; ; 2 6 2 1 4 |
| 146 | 43 | mullidi | ⊢ ( 1 · 2 ) = 2 |
| 147 | 2 3 16 117 35 146 | decmul1 | ⊢ ( ; 5 1 · 2 ) = ; ; 1 0 2 |
| 148 | 2 17 2 115 147 29 | decmul1 | ⊢ ( ; ; 5 1 2 · 2 ) = ; ; ; 1 0 2 4 |
| 149 | 18 17 2 115 13 116 145 148 | decmul2c | ⊢ ( ; ; 5 1 2 · ; ; 5 1 2 ) = ; ; ; ; ; 2 6 2 1 4 4 |
| 150 | 114 149 | eqtr4i | ⊢ ( ( ; ; 1 0 4 · 𝑁 ) + ; ; ; 1 8 3 2 ) = ( ; ; 5 1 2 · ; ; 5 1 2 ) |
| 151 | 9 10 11 15 18 23 41 45 150 | mod2xi | ⊢ ( ( 2 ↑ ; 1 8 ) mod 𝑁 ) = ( ; ; ; 1 8 3 2 mod 𝑁 ) |