Metamath Proof Explorer


Theorem nprmi

Description: An inference for compositeness. (Contributed by Mario Carneiro, 18-Feb-2014) (Revised by Mario Carneiro, 20-Jun-2015)

Ref Expression
Hypotheses nprmi.1 A
nprmi.2 B
nprmi.3 1<A
nprmi.4 1<B
nprmi.5 AB=N
Assertion nprmi ¬N

Proof

Step Hyp Ref Expression
1 nprmi.1 A
2 nprmi.2 B
3 nprmi.3 1<A
4 nprmi.4 1<B
5 nprmi.5 AB=N
6 eluz2b2 A2A1<A
7 eluz2b2 B2B1<B
8 nprm A2B2¬AB
9 6 7 8 syl2anbr A1<AB1<B¬AB
10 1 3 2 4 9 mp4an ¬AB
11 5 eleq1i ABN
12 10 11 mtbi ¬N