Metamath Proof Explorer


Theorem fmtnofz04prm

Description: The first five Fermat numbers are prime, see remark in ApostolNT p. 7. (Contributed by AV, 28-Jul-2021)

Ref Expression
Assertion fmtnofz04prm N04FermatNoN

Proof

Step Hyp Ref Expression
1 4nn0 40
2 el1fzopredsuc 40N04N=0N1..^4N=4
3 1 2 ax-mp N04N=0N1..^4N=4
4 fveq2 N=0FermatNoN=FermatNo0
5 fmtno0prm FermatNo0
6 4 5 eqeltrdi N=0FermatNoN
7 eltpi N123N=1N=2N=3
8 fveq2 N=1FermatNoN=FermatNo1
9 fmtno1prm FermatNo1
10 8 9 eqeltrdi N=1FermatNoN
11 fveq2 N=2FermatNoN=FermatNo2
12 fmtno2prm FermatNo2
13 11 12 eqeltrdi N=2FermatNoN
14 fveq2 N=3FermatNoN=FermatNo3
15 fmtno3prm FermatNo3
16 14 15 eqeltrdi N=3FermatNoN
17 10 13 16 3jaoi N=1N=2N=3FermatNoN
18 7 17 syl N123FermatNoN
19 fzo1to4tp 1..^4=123
20 18 19 eleq2s N1..^4FermatNoN
21 fveq2 N=4FermatNoN=FermatNo4
22 fmtno4prm FermatNo4
23 21 22 eqeltrdi N=4FermatNoN
24 6 20 23 3jaoi N=0N1..^4N=4FermatNoN
25 3 24 sylbi N04FermatNoN