Metamath Proof Explorer


Theorem fmtnofz04prm

Description: The first five Fermat numbers are prime, see remark in ApostolNT p. 7. (Contributed by AV, 28-Jul-2021)

Ref Expression
Assertion fmtnofz04prm N 0 4 FermatNo N

Proof

Step Hyp Ref Expression
1 4nn0 4 0
2 el1fzopredsuc 4 0 N 0 4 N = 0 N 1 ..^ 4 N = 4
3 1 2 ax-mp N 0 4 N = 0 N 1 ..^ 4 N = 4
4 fveq2 N = 0 FermatNo N = FermatNo 0
5 fmtno0prm FermatNo 0
6 4 5 eqeltrdi N = 0 FermatNo N
7 eltpi N 1 2 3 N = 1 N = 2 N = 3
8 fveq2 N = 1 FermatNo N = FermatNo 1
9 fmtno1prm FermatNo 1
10 8 9 eqeltrdi N = 1 FermatNo N
11 fveq2 N = 2 FermatNo N = FermatNo 2
12 fmtno2prm FermatNo 2
13 11 12 eqeltrdi N = 2 FermatNo N
14 fveq2 N = 3 FermatNo N = FermatNo 3
15 fmtno3prm FermatNo 3
16 14 15 eqeltrdi N = 3 FermatNo N
17 10 13 16 3jaoi N = 1 N = 2 N = 3 FermatNo N
18 7 17 syl N 1 2 3 FermatNo N
19 fzo1to4tp 1 ..^ 4 = 1 2 3
20 18 19 eleq2s N 1 ..^ 4 FermatNo N
21 fveq2 N = 4 FermatNo N = FermatNo 4
22 fmtno4prm FermatNo 4
23 21 22 eqeltrdi N = 4 FermatNo N
24 6 20 23 3jaoi N = 0 N 1 ..^ 4 N = 4 FermatNo N
25 3 24 sylbi N 0 4 FermatNo N