| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 4nn0 |  |-  4 e. NN0 | 
						
							| 2 |  | el1fzopredsuc |  |-  ( 4 e. NN0 -> ( N e. ( 0 ... 4 ) <-> ( N = 0 \/ N e. ( 1 ..^ 4 ) \/ N = 4 ) ) ) | 
						
							| 3 | 1 2 | ax-mp |  |-  ( N e. ( 0 ... 4 ) <-> ( N = 0 \/ N e. ( 1 ..^ 4 ) \/ N = 4 ) ) | 
						
							| 4 |  | fveq2 |  |-  ( N = 0 -> ( FermatNo ` N ) = ( FermatNo ` 0 ) ) | 
						
							| 5 |  | fmtno0prm |  |-  ( FermatNo ` 0 ) e. Prime | 
						
							| 6 | 4 5 | eqeltrdi |  |-  ( N = 0 -> ( FermatNo ` N ) e. Prime ) | 
						
							| 7 |  | eltpi |  |-  ( N e. { 1 , 2 , 3 } -> ( N = 1 \/ N = 2 \/ N = 3 ) ) | 
						
							| 8 |  | fveq2 |  |-  ( N = 1 -> ( FermatNo ` N ) = ( FermatNo ` 1 ) ) | 
						
							| 9 |  | fmtno1prm |  |-  ( FermatNo ` 1 ) e. Prime | 
						
							| 10 | 8 9 | eqeltrdi |  |-  ( N = 1 -> ( FermatNo ` N ) e. Prime ) | 
						
							| 11 |  | fveq2 |  |-  ( N = 2 -> ( FermatNo ` N ) = ( FermatNo ` 2 ) ) | 
						
							| 12 |  | fmtno2prm |  |-  ( FermatNo ` 2 ) e. Prime | 
						
							| 13 | 11 12 | eqeltrdi |  |-  ( N = 2 -> ( FermatNo ` N ) e. Prime ) | 
						
							| 14 |  | fveq2 |  |-  ( N = 3 -> ( FermatNo ` N ) = ( FermatNo ` 3 ) ) | 
						
							| 15 |  | fmtno3prm |  |-  ( FermatNo ` 3 ) e. Prime | 
						
							| 16 | 14 15 | eqeltrdi |  |-  ( N = 3 -> ( FermatNo ` N ) e. Prime ) | 
						
							| 17 | 10 13 16 | 3jaoi |  |-  ( ( N = 1 \/ N = 2 \/ N = 3 ) -> ( FermatNo ` N ) e. Prime ) | 
						
							| 18 | 7 17 | syl |  |-  ( N e. { 1 , 2 , 3 } -> ( FermatNo ` N ) e. Prime ) | 
						
							| 19 |  | fzo1to4tp |  |-  ( 1 ..^ 4 ) = { 1 , 2 , 3 } | 
						
							| 20 | 18 19 | eleq2s |  |-  ( N e. ( 1 ..^ 4 ) -> ( FermatNo ` N ) e. Prime ) | 
						
							| 21 |  | fveq2 |  |-  ( N = 4 -> ( FermatNo ` N ) = ( FermatNo ` 4 ) ) | 
						
							| 22 |  | fmtno4prm |  |-  ( FermatNo ` 4 ) e. Prime | 
						
							| 23 | 21 22 | eqeltrdi |  |-  ( N = 4 -> ( FermatNo ` N ) e. Prime ) | 
						
							| 24 | 6 20 23 | 3jaoi |  |-  ( ( N = 0 \/ N e. ( 1 ..^ 4 ) \/ N = 4 ) -> ( FermatNo ` N ) e. Prime ) | 
						
							| 25 | 3 24 | sylbi |  |-  ( N e. ( 0 ... 4 ) -> ( FermatNo ` N ) e. Prime ) |