| Step |
Hyp |
Ref |
Expression |
| 1 |
|
4nn0 |
|- 4 e. NN0 |
| 2 |
|
el1fzopredsuc |
|- ( 4 e. NN0 -> ( N e. ( 0 ... 4 ) <-> ( N = 0 \/ N e. ( 1 ..^ 4 ) \/ N = 4 ) ) ) |
| 3 |
1 2
|
ax-mp |
|- ( N e. ( 0 ... 4 ) <-> ( N = 0 \/ N e. ( 1 ..^ 4 ) \/ N = 4 ) ) |
| 4 |
|
fveq2 |
|- ( N = 0 -> ( FermatNo ` N ) = ( FermatNo ` 0 ) ) |
| 5 |
|
fmtno0prm |
|- ( FermatNo ` 0 ) e. Prime |
| 6 |
4 5
|
eqeltrdi |
|- ( N = 0 -> ( FermatNo ` N ) e. Prime ) |
| 7 |
|
eltpi |
|- ( N e. { 1 , 2 , 3 } -> ( N = 1 \/ N = 2 \/ N = 3 ) ) |
| 8 |
|
fveq2 |
|- ( N = 1 -> ( FermatNo ` N ) = ( FermatNo ` 1 ) ) |
| 9 |
|
fmtno1prm |
|- ( FermatNo ` 1 ) e. Prime |
| 10 |
8 9
|
eqeltrdi |
|- ( N = 1 -> ( FermatNo ` N ) e. Prime ) |
| 11 |
|
fveq2 |
|- ( N = 2 -> ( FermatNo ` N ) = ( FermatNo ` 2 ) ) |
| 12 |
|
fmtno2prm |
|- ( FermatNo ` 2 ) e. Prime |
| 13 |
11 12
|
eqeltrdi |
|- ( N = 2 -> ( FermatNo ` N ) e. Prime ) |
| 14 |
|
fveq2 |
|- ( N = 3 -> ( FermatNo ` N ) = ( FermatNo ` 3 ) ) |
| 15 |
|
fmtno3prm |
|- ( FermatNo ` 3 ) e. Prime |
| 16 |
14 15
|
eqeltrdi |
|- ( N = 3 -> ( FermatNo ` N ) e. Prime ) |
| 17 |
10 13 16
|
3jaoi |
|- ( ( N = 1 \/ N = 2 \/ N = 3 ) -> ( FermatNo ` N ) e. Prime ) |
| 18 |
7 17
|
syl |
|- ( N e. { 1 , 2 , 3 } -> ( FermatNo ` N ) e. Prime ) |
| 19 |
|
fzo1to4tp |
|- ( 1 ..^ 4 ) = { 1 , 2 , 3 } |
| 20 |
18 19
|
eleq2s |
|- ( N e. ( 1 ..^ 4 ) -> ( FermatNo ` N ) e. Prime ) |
| 21 |
|
fveq2 |
|- ( N = 4 -> ( FermatNo ` N ) = ( FermatNo ` 4 ) ) |
| 22 |
|
fmtno4prm |
|- ( FermatNo ` 4 ) e. Prime |
| 23 |
21 22
|
eqeltrdi |
|- ( N = 4 -> ( FermatNo ` N ) e. Prime ) |
| 24 |
6 20 23
|
3jaoi |
|- ( ( N = 0 \/ N e. ( 1 ..^ 4 ) \/ N = 4 ) -> ( FermatNo ` N ) e. Prime ) |
| 25 |
3 24
|
sylbi |
|- ( N e. ( 0 ... 4 ) -> ( FermatNo ` N ) e. Prime ) |