Step |
Hyp |
Ref |
Expression |
1 |
|
4nn0 |
|- 4 e. NN0 |
2 |
|
fmtno |
|- ( 4 e. NN0 -> ( FermatNo ` 4 ) = ( ( 2 ^ ( 2 ^ 4 ) ) + 1 ) ) |
3 |
1 2
|
ax-mp |
|- ( FermatNo ` 4 ) = ( ( 2 ^ ( 2 ^ 4 ) ) + 1 ) |
4 |
|
2nn |
|- 2 e. NN |
5 |
|
2nn0 |
|- 2 e. NN0 |
6 |
5 1
|
nn0expcli |
|- ( 2 ^ 4 ) e. NN0 |
7 |
|
nnexpcl |
|- ( ( 2 e. NN /\ ( 2 ^ 4 ) e. NN0 ) -> ( 2 ^ ( 2 ^ 4 ) ) e. NN ) |
8 |
4 6 7
|
mp2an |
|- ( 2 ^ ( 2 ^ 4 ) ) e. NN |
9 |
|
2re |
|- 2 e. RR |
10 |
|
nnexpcl |
|- ( ( 2 e. NN /\ 4 e. NN0 ) -> ( 2 ^ 4 ) e. NN ) |
11 |
4 1 10
|
mp2an |
|- ( 2 ^ 4 ) e. NN |
12 |
|
1lt2 |
|- 1 < 2 |
13 |
|
expgt1 |
|- ( ( 2 e. RR /\ ( 2 ^ 4 ) e. NN /\ 1 < 2 ) -> 1 < ( 2 ^ ( 2 ^ 4 ) ) ) |
14 |
9 11 12 13
|
mp3an |
|- 1 < ( 2 ^ ( 2 ^ 4 ) ) |
15 |
|
eluz2b2 |
|- ( ( 2 ^ ( 2 ^ 4 ) ) e. ( ZZ>= ` 2 ) <-> ( ( 2 ^ ( 2 ^ 4 ) ) e. NN /\ 1 < ( 2 ^ ( 2 ^ 4 ) ) ) ) |
16 |
8 14 15
|
mpbir2an |
|- ( 2 ^ ( 2 ^ 4 ) ) e. ( ZZ>= ` 2 ) |
17 |
|
peano2uz |
|- ( ( 2 ^ ( 2 ^ 4 ) ) e. ( ZZ>= ` 2 ) -> ( ( 2 ^ ( 2 ^ 4 ) ) + 1 ) e. ( ZZ>= ` 2 ) ) |
18 |
16 17
|
ax-mp |
|- ( ( 2 ^ ( 2 ^ 4 ) ) + 1 ) e. ( ZZ>= ` 2 ) |
19 |
3 18
|
eqeltri |
|- ( FermatNo ` 4 ) e. ( ZZ>= ` 2 ) |
20 |
|
elinel2 |
|- ( p e. ( ( 2 ... ( |_ ` ( sqrt ` ( FermatNo ` 4 ) ) ) ) i^i Prime ) -> p e. Prime ) |
21 |
20
|
adantr |
|- ( ( p e. ( ( 2 ... ( |_ ` ( sqrt ` ( FermatNo ` 4 ) ) ) ) i^i Prime ) /\ p || ( FermatNo ` 4 ) ) -> p e. Prime ) |
22 |
|
simpr |
|- ( ( p e. ( ( 2 ... ( |_ ` ( sqrt ` ( FermatNo ` 4 ) ) ) ) i^i Prime ) /\ p || ( FermatNo ` 4 ) ) -> p || ( FermatNo ` 4 ) ) |
23 |
|
elinel1 |
|- ( p e. ( ( 2 ... ( |_ ` ( sqrt ` ( FermatNo ` 4 ) ) ) ) i^i Prime ) -> p e. ( 2 ... ( |_ ` ( sqrt ` ( FermatNo ` 4 ) ) ) ) ) |
24 |
|
elfzle2 |
|- ( p e. ( 2 ... ( |_ ` ( sqrt ` ( FermatNo ` 4 ) ) ) ) -> p <_ ( |_ ` ( sqrt ` ( FermatNo ` 4 ) ) ) ) |
25 |
23 24
|
syl |
|- ( p e. ( ( 2 ... ( |_ ` ( sqrt ` ( FermatNo ` 4 ) ) ) ) i^i Prime ) -> p <_ ( |_ ` ( sqrt ` ( FermatNo ` 4 ) ) ) ) |
26 |
25
|
adantr |
|- ( ( p e. ( ( 2 ... ( |_ ` ( sqrt ` ( FermatNo ` 4 ) ) ) ) i^i Prime ) /\ p || ( FermatNo ` 4 ) ) -> p <_ ( |_ ` ( sqrt ` ( FermatNo ` 4 ) ) ) ) |
27 |
|
fmtno4prmfac193 |
|- ( ( p e. Prime /\ p || ( FermatNo ` 4 ) /\ p <_ ( |_ ` ( sqrt ` ( FermatNo ` 4 ) ) ) ) -> p = ; ; 1 9 3 ) |
28 |
21 22 26 27
|
syl3anc |
|- ( ( p e. ( ( 2 ... ( |_ ` ( sqrt ` ( FermatNo ` 4 ) ) ) ) i^i Prime ) /\ p || ( FermatNo ` 4 ) ) -> p = ; ; 1 9 3 ) |
29 |
|
fmtno4nprmfac193 |
|- -. ; ; 1 9 3 || ( FermatNo ` 4 ) |
30 |
|
breq1 |
|- ( p = ; ; 1 9 3 -> ( p || ( FermatNo ` 4 ) <-> ; ; 1 9 3 || ( FermatNo ` 4 ) ) ) |
31 |
29 30
|
mtbiri |
|- ( p = ; ; 1 9 3 -> -. p || ( FermatNo ` 4 ) ) |
32 |
28 31
|
syl |
|- ( ( p e. ( ( 2 ... ( |_ ` ( sqrt ` ( FermatNo ` 4 ) ) ) ) i^i Prime ) /\ p || ( FermatNo ` 4 ) ) -> -. p || ( FermatNo ` 4 ) ) |
33 |
32
|
pm2.01da |
|- ( p e. ( ( 2 ... ( |_ ` ( sqrt ` ( FermatNo ` 4 ) ) ) ) i^i Prime ) -> -. p || ( FermatNo ` 4 ) ) |
34 |
33
|
rgen |
|- A. p e. ( ( 2 ... ( |_ ` ( sqrt ` ( FermatNo ` 4 ) ) ) ) i^i Prime ) -. p || ( FermatNo ` 4 ) |
35 |
|
isprm7 |
|- ( ( FermatNo ` 4 ) e. Prime <-> ( ( FermatNo ` 4 ) e. ( ZZ>= ` 2 ) /\ A. p e. ( ( 2 ... ( |_ ` ( sqrt ` ( FermatNo ` 4 ) ) ) ) i^i Prime ) -. p || ( FermatNo ` 4 ) ) ) |
36 |
19 34 35
|
mpbir2an |
|- ( FermatNo ` 4 ) e. Prime |