| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fmtno4prmfac |  |-  ( ( P e. Prime /\ P || ( FermatNo ` 4 ) /\ P <_ ( |_ ` ( sqrt ` ( FermatNo ` 4 ) ) ) ) -> ( P = ; 6 5 \/ P = ; ; 1 2 9 \/ P = ; ; 1 9 3 ) ) | 
						
							| 2 |  | 5nn |  |-  5 e. NN | 
						
							| 3 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 4 |  | 3nn |  |-  3 e. NN | 
						
							| 5 | 3 4 | decnncl |  |-  ; 1 3 e. NN | 
						
							| 6 |  | 1lt5 |  |-  1 < 5 | 
						
							| 7 |  | 1nn |  |-  1 e. NN | 
						
							| 8 |  | 3nn0 |  |-  3 e. NN0 | 
						
							| 9 |  | 1lt10 |  |-  1 < ; 1 0 | 
						
							| 10 | 7 8 3 9 | declti |  |-  1 < ; 1 3 | 
						
							| 11 |  | eqid |  |-  ( 5 x. ; 1 3 ) = ( 5 x. ; 1 3 ) | 
						
							| 12 | 2 5 6 10 11 | nprmi |  |-  -. ( 5 x. ; 1 3 ) e. Prime | 
						
							| 13 |  | id |  |-  ( P = ; 6 5 -> P = ; 6 5 ) | 
						
							| 14 |  | 5nn0 |  |-  5 e. NN0 | 
						
							| 15 |  | eqid |  |-  ; 1 3 = ; 1 3 | 
						
							| 16 |  | 5cn |  |-  5 e. CC | 
						
							| 17 | 16 | mulridi |  |-  ( 5 x. 1 ) = 5 | 
						
							| 18 | 17 | oveq1i |  |-  ( ( 5 x. 1 ) + 1 ) = ( 5 + 1 ) | 
						
							| 19 |  | 5p1e6 |  |-  ( 5 + 1 ) = 6 | 
						
							| 20 | 18 19 | eqtri |  |-  ( ( 5 x. 1 ) + 1 ) = 6 | 
						
							| 21 |  | 5t3e15 |  |-  ( 5 x. 3 ) = ; 1 5 | 
						
							| 22 | 14 3 8 15 14 3 20 21 | decmul2c |  |-  ( 5 x. ; 1 3 ) = ; 6 5 | 
						
							| 23 | 13 22 | eqtr4di |  |-  ( P = ; 6 5 -> P = ( 5 x. ; 1 3 ) ) | 
						
							| 24 | 23 | eleq1d |  |-  ( P = ; 6 5 -> ( P e. Prime <-> ( 5 x. ; 1 3 ) e. Prime ) ) | 
						
							| 25 | 12 24 | mtbiri |  |-  ( P = ; 6 5 -> -. P e. Prime ) | 
						
							| 26 | 25 | pm2.21d |  |-  ( P = ; 6 5 -> ( P e. Prime -> P = ; ; 1 9 3 ) ) | 
						
							| 27 |  | 4nn0 |  |-  4 e. NN0 | 
						
							| 28 | 27 4 | decnncl |  |-  ; 4 3 e. NN | 
						
							| 29 |  | 4nn |  |-  4 e. NN | 
						
							| 30 | 29 8 3 9 | declti |  |-  1 < ; 4 3 | 
						
							| 31 |  | 1lt3 |  |-  1 < 3 | 
						
							| 32 |  | eqid |  |-  ( ; 4 3 x. 3 ) = ( ; 4 3 x. 3 ) | 
						
							| 33 | 28 4 30 31 32 | nprmi |  |-  -. ( ; 4 3 x. 3 ) e. Prime | 
						
							| 34 |  | id |  |-  ( P = ; ; 1 2 9 -> P = ; ; 1 2 9 ) | 
						
							| 35 |  | eqid |  |-  ; 4 3 = ; 4 3 | 
						
							| 36 |  | 4t3e12 |  |-  ( 4 x. 3 ) = ; 1 2 | 
						
							| 37 |  | 3t3e9 |  |-  ( 3 x. 3 ) = 9 | 
						
							| 38 | 8 27 8 35 36 37 | decmul1 |  |-  ( ; 4 3 x. 3 ) = ; ; 1 2 9 | 
						
							| 39 | 34 38 | eqtr4di |  |-  ( P = ; ; 1 2 9 -> P = ( ; 4 3 x. 3 ) ) | 
						
							| 40 | 39 | eleq1d |  |-  ( P = ; ; 1 2 9 -> ( P e. Prime <-> ( ; 4 3 x. 3 ) e. Prime ) ) | 
						
							| 41 | 33 40 | mtbiri |  |-  ( P = ; ; 1 2 9 -> -. P e. Prime ) | 
						
							| 42 | 41 | pm2.21d |  |-  ( P = ; ; 1 2 9 -> ( P e. Prime -> P = ; ; 1 9 3 ) ) | 
						
							| 43 |  | ax-1 |  |-  ( P = ; ; 1 9 3 -> ( P e. Prime -> P = ; ; 1 9 3 ) ) | 
						
							| 44 | 26 42 43 | 3jaoi |  |-  ( ( P = ; 6 5 \/ P = ; ; 1 2 9 \/ P = ; ; 1 9 3 ) -> ( P e. Prime -> P = ; ; 1 9 3 ) ) | 
						
							| 45 | 44 | com12 |  |-  ( P e. Prime -> ( ( P = ; 6 5 \/ P = ; ; 1 2 9 \/ P = ; ; 1 9 3 ) -> P = ; ; 1 9 3 ) ) | 
						
							| 46 | 45 | 3ad2ant1 |  |-  ( ( P e. Prime /\ P || ( FermatNo ` 4 ) /\ P <_ ( |_ ` ( sqrt ` ( FermatNo ` 4 ) ) ) ) -> ( ( P = ; 6 5 \/ P = ; ; 1 2 9 \/ P = ; ; 1 9 3 ) -> P = ; ; 1 9 3 ) ) | 
						
							| 47 | 1 46 | mpd |  |-  ( ( P e. Prime /\ P || ( FermatNo ` 4 ) /\ P <_ ( |_ ` ( sqrt ` ( FermatNo ` 4 ) ) ) ) -> P = ; ; 1 9 3 ) |