| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fmtno4prmfac |
|- ( ( P e. Prime /\ P || ( FermatNo ` 4 ) /\ P <_ ( |_ ` ( sqrt ` ( FermatNo ` 4 ) ) ) ) -> ( P = ; 6 5 \/ P = ; ; 1 2 9 \/ P = ; ; 1 9 3 ) ) |
| 2 |
|
5nn |
|- 5 e. NN |
| 3 |
|
1nn0 |
|- 1 e. NN0 |
| 4 |
|
3nn |
|- 3 e. NN |
| 5 |
3 4
|
decnncl |
|- ; 1 3 e. NN |
| 6 |
|
1lt5 |
|- 1 < 5 |
| 7 |
|
1nn |
|- 1 e. NN |
| 8 |
|
3nn0 |
|- 3 e. NN0 |
| 9 |
|
1lt10 |
|- 1 < ; 1 0 |
| 10 |
7 8 3 9
|
declti |
|- 1 < ; 1 3 |
| 11 |
|
eqid |
|- ( 5 x. ; 1 3 ) = ( 5 x. ; 1 3 ) |
| 12 |
2 5 6 10 11
|
nprmi |
|- -. ( 5 x. ; 1 3 ) e. Prime |
| 13 |
|
id |
|- ( P = ; 6 5 -> P = ; 6 5 ) |
| 14 |
|
5nn0 |
|- 5 e. NN0 |
| 15 |
|
eqid |
|- ; 1 3 = ; 1 3 |
| 16 |
|
5cn |
|- 5 e. CC |
| 17 |
16
|
mulridi |
|- ( 5 x. 1 ) = 5 |
| 18 |
17
|
oveq1i |
|- ( ( 5 x. 1 ) + 1 ) = ( 5 + 1 ) |
| 19 |
|
5p1e6 |
|- ( 5 + 1 ) = 6 |
| 20 |
18 19
|
eqtri |
|- ( ( 5 x. 1 ) + 1 ) = 6 |
| 21 |
|
5t3e15 |
|- ( 5 x. 3 ) = ; 1 5 |
| 22 |
14 3 8 15 14 3 20 21
|
decmul2c |
|- ( 5 x. ; 1 3 ) = ; 6 5 |
| 23 |
13 22
|
eqtr4di |
|- ( P = ; 6 5 -> P = ( 5 x. ; 1 3 ) ) |
| 24 |
23
|
eleq1d |
|- ( P = ; 6 5 -> ( P e. Prime <-> ( 5 x. ; 1 3 ) e. Prime ) ) |
| 25 |
12 24
|
mtbiri |
|- ( P = ; 6 5 -> -. P e. Prime ) |
| 26 |
25
|
pm2.21d |
|- ( P = ; 6 5 -> ( P e. Prime -> P = ; ; 1 9 3 ) ) |
| 27 |
|
4nn0 |
|- 4 e. NN0 |
| 28 |
27 4
|
decnncl |
|- ; 4 3 e. NN |
| 29 |
|
4nn |
|- 4 e. NN |
| 30 |
29 8 3 9
|
declti |
|- 1 < ; 4 3 |
| 31 |
|
1lt3 |
|- 1 < 3 |
| 32 |
|
eqid |
|- ( ; 4 3 x. 3 ) = ( ; 4 3 x. 3 ) |
| 33 |
28 4 30 31 32
|
nprmi |
|- -. ( ; 4 3 x. 3 ) e. Prime |
| 34 |
|
id |
|- ( P = ; ; 1 2 9 -> P = ; ; 1 2 9 ) |
| 35 |
|
eqid |
|- ; 4 3 = ; 4 3 |
| 36 |
|
4t3e12 |
|- ( 4 x. 3 ) = ; 1 2 |
| 37 |
|
3t3e9 |
|- ( 3 x. 3 ) = 9 |
| 38 |
8 27 8 35 36 37
|
decmul1 |
|- ( ; 4 3 x. 3 ) = ; ; 1 2 9 |
| 39 |
34 38
|
eqtr4di |
|- ( P = ; ; 1 2 9 -> P = ( ; 4 3 x. 3 ) ) |
| 40 |
39
|
eleq1d |
|- ( P = ; ; 1 2 9 -> ( P e. Prime <-> ( ; 4 3 x. 3 ) e. Prime ) ) |
| 41 |
33 40
|
mtbiri |
|- ( P = ; ; 1 2 9 -> -. P e. Prime ) |
| 42 |
41
|
pm2.21d |
|- ( P = ; ; 1 2 9 -> ( P e. Prime -> P = ; ; 1 9 3 ) ) |
| 43 |
|
ax-1 |
|- ( P = ; ; 1 9 3 -> ( P e. Prime -> P = ; ; 1 9 3 ) ) |
| 44 |
26 42 43
|
3jaoi |
|- ( ( P = ; 6 5 \/ P = ; ; 1 2 9 \/ P = ; ; 1 9 3 ) -> ( P e. Prime -> P = ; ; 1 9 3 ) ) |
| 45 |
44
|
com12 |
|- ( P e. Prime -> ( ( P = ; 6 5 \/ P = ; ; 1 2 9 \/ P = ; ; 1 9 3 ) -> P = ; ; 1 9 3 ) ) |
| 46 |
45
|
3ad2ant1 |
|- ( ( P e. Prime /\ P || ( FermatNo ` 4 ) /\ P <_ ( |_ ` ( sqrt ` ( FermatNo ` 4 ) ) ) ) -> ( ( P = ; 6 5 \/ P = ; ; 1 2 9 \/ P = ; ; 1 9 3 ) -> P = ; ; 1 9 3 ) ) |
| 47 |
1 46
|
mpd |
|- ( ( P e. Prime /\ P || ( FermatNo ` 4 ) /\ P <_ ( |_ ` ( sqrt ` ( FermatNo ` 4 ) ) ) ) -> P = ; ; 1 9 3 ) |