Step |
Hyp |
Ref |
Expression |
1 |
|
fmtno4prmfac |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( FermatNo ‘ 4 ) ∧ 𝑃 ≤ ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) ) → ( 𝑃 = ; 6 5 ∨ 𝑃 = ; ; 1 2 9 ∨ 𝑃 = ; ; 1 9 3 ) ) |
2 |
|
5nn |
⊢ 5 ∈ ℕ |
3 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
4 |
|
3nn |
⊢ 3 ∈ ℕ |
5 |
3 4
|
decnncl |
⊢ ; 1 3 ∈ ℕ |
6 |
|
1lt5 |
⊢ 1 < 5 |
7 |
|
1nn |
⊢ 1 ∈ ℕ |
8 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
9 |
|
1lt10 |
⊢ 1 < ; 1 0 |
10 |
7 8 3 9
|
declti |
⊢ 1 < ; 1 3 |
11 |
|
eqid |
⊢ ( 5 · ; 1 3 ) = ( 5 · ; 1 3 ) |
12 |
2 5 6 10 11
|
nprmi |
⊢ ¬ ( 5 · ; 1 3 ) ∈ ℙ |
13 |
|
id |
⊢ ( 𝑃 = ; 6 5 → 𝑃 = ; 6 5 ) |
14 |
|
5nn0 |
⊢ 5 ∈ ℕ0 |
15 |
|
eqid |
⊢ ; 1 3 = ; 1 3 |
16 |
|
5cn |
⊢ 5 ∈ ℂ |
17 |
16
|
mulid1i |
⊢ ( 5 · 1 ) = 5 |
18 |
17
|
oveq1i |
⊢ ( ( 5 · 1 ) + 1 ) = ( 5 + 1 ) |
19 |
|
5p1e6 |
⊢ ( 5 + 1 ) = 6 |
20 |
18 19
|
eqtri |
⊢ ( ( 5 · 1 ) + 1 ) = 6 |
21 |
|
5t3e15 |
⊢ ( 5 · 3 ) = ; 1 5 |
22 |
14 3 8 15 14 3 20 21
|
decmul2c |
⊢ ( 5 · ; 1 3 ) = ; 6 5 |
23 |
13 22
|
eqtr4di |
⊢ ( 𝑃 = ; 6 5 → 𝑃 = ( 5 · ; 1 3 ) ) |
24 |
23
|
eleq1d |
⊢ ( 𝑃 = ; 6 5 → ( 𝑃 ∈ ℙ ↔ ( 5 · ; 1 3 ) ∈ ℙ ) ) |
25 |
12 24
|
mtbiri |
⊢ ( 𝑃 = ; 6 5 → ¬ 𝑃 ∈ ℙ ) |
26 |
25
|
pm2.21d |
⊢ ( 𝑃 = ; 6 5 → ( 𝑃 ∈ ℙ → 𝑃 = ; ; 1 9 3 ) ) |
27 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
28 |
27 4
|
decnncl |
⊢ ; 4 3 ∈ ℕ |
29 |
|
4nn |
⊢ 4 ∈ ℕ |
30 |
29 8 3 9
|
declti |
⊢ 1 < ; 4 3 |
31 |
|
1lt3 |
⊢ 1 < 3 |
32 |
|
eqid |
⊢ ( ; 4 3 · 3 ) = ( ; 4 3 · 3 ) |
33 |
28 4 30 31 32
|
nprmi |
⊢ ¬ ( ; 4 3 · 3 ) ∈ ℙ |
34 |
|
id |
⊢ ( 𝑃 = ; ; 1 2 9 → 𝑃 = ; ; 1 2 9 ) |
35 |
|
eqid |
⊢ ; 4 3 = ; 4 3 |
36 |
|
4t3e12 |
⊢ ( 4 · 3 ) = ; 1 2 |
37 |
|
3t3e9 |
⊢ ( 3 · 3 ) = 9 |
38 |
8 27 8 35 36 37
|
decmul1 |
⊢ ( ; 4 3 · 3 ) = ; ; 1 2 9 |
39 |
34 38
|
eqtr4di |
⊢ ( 𝑃 = ; ; 1 2 9 → 𝑃 = ( ; 4 3 · 3 ) ) |
40 |
39
|
eleq1d |
⊢ ( 𝑃 = ; ; 1 2 9 → ( 𝑃 ∈ ℙ ↔ ( ; 4 3 · 3 ) ∈ ℙ ) ) |
41 |
33 40
|
mtbiri |
⊢ ( 𝑃 = ; ; 1 2 9 → ¬ 𝑃 ∈ ℙ ) |
42 |
41
|
pm2.21d |
⊢ ( 𝑃 = ; ; 1 2 9 → ( 𝑃 ∈ ℙ → 𝑃 = ; ; 1 9 3 ) ) |
43 |
|
ax-1 |
⊢ ( 𝑃 = ; ; 1 9 3 → ( 𝑃 ∈ ℙ → 𝑃 = ; ; 1 9 3 ) ) |
44 |
26 42 43
|
3jaoi |
⊢ ( ( 𝑃 = ; 6 5 ∨ 𝑃 = ; ; 1 2 9 ∨ 𝑃 = ; ; 1 9 3 ) → ( 𝑃 ∈ ℙ → 𝑃 = ; ; 1 9 3 ) ) |
45 |
44
|
com12 |
⊢ ( 𝑃 ∈ ℙ → ( ( 𝑃 = ; 6 5 ∨ 𝑃 = ; ; 1 2 9 ∨ 𝑃 = ; ; 1 9 3 ) → 𝑃 = ; ; 1 9 3 ) ) |
46 |
45
|
3ad2ant1 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( FermatNo ‘ 4 ) ∧ 𝑃 ≤ ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) ) → ( ( 𝑃 = ; 6 5 ∨ 𝑃 = ; ; 1 2 9 ∨ 𝑃 = ; ; 1 9 3 ) → 𝑃 = ; ; 1 9 3 ) ) |
47 |
1 46
|
mpd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( FermatNo ‘ 4 ) ∧ 𝑃 ≤ ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) ) → 𝑃 = ; ; 1 9 3 ) |