| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fmtno4prmfac | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑃  ∥  ( FermatNo ‘ 4 )  ∧  𝑃  ≤  ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) )  →  ( 𝑃  =  ; 6 5  ∨  𝑃  =  ; ; 1 2 9  ∨  𝑃  =  ; ; 1 9 3 ) ) | 
						
							| 2 |  | 5nn | ⊢ 5  ∈  ℕ | 
						
							| 3 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 4 |  | 3nn | ⊢ 3  ∈  ℕ | 
						
							| 5 | 3 4 | decnncl | ⊢ ; 1 3  ∈  ℕ | 
						
							| 6 |  | 1lt5 | ⊢ 1  <  5 | 
						
							| 7 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 8 |  | 3nn0 | ⊢ 3  ∈  ℕ0 | 
						
							| 9 |  | 1lt10 | ⊢ 1  <  ; 1 0 | 
						
							| 10 | 7 8 3 9 | declti | ⊢ 1  <  ; 1 3 | 
						
							| 11 |  | eqid | ⊢ ( 5  ·  ; 1 3 )  =  ( 5  ·  ; 1 3 ) | 
						
							| 12 | 2 5 6 10 11 | nprmi | ⊢ ¬  ( 5  ·  ; 1 3 )  ∈  ℙ | 
						
							| 13 |  | id | ⊢ ( 𝑃  =  ; 6 5  →  𝑃  =  ; 6 5 ) | 
						
							| 14 |  | 5nn0 | ⊢ 5  ∈  ℕ0 | 
						
							| 15 |  | eqid | ⊢ ; 1 3  =  ; 1 3 | 
						
							| 16 |  | 5cn | ⊢ 5  ∈  ℂ | 
						
							| 17 | 16 | mulridi | ⊢ ( 5  ·  1 )  =  5 | 
						
							| 18 | 17 | oveq1i | ⊢ ( ( 5  ·  1 )  +  1 )  =  ( 5  +  1 ) | 
						
							| 19 |  | 5p1e6 | ⊢ ( 5  +  1 )  =  6 | 
						
							| 20 | 18 19 | eqtri | ⊢ ( ( 5  ·  1 )  +  1 )  =  6 | 
						
							| 21 |  | 5t3e15 | ⊢ ( 5  ·  3 )  =  ; 1 5 | 
						
							| 22 | 14 3 8 15 14 3 20 21 | decmul2c | ⊢ ( 5  ·  ; 1 3 )  =  ; 6 5 | 
						
							| 23 | 13 22 | eqtr4di | ⊢ ( 𝑃  =  ; 6 5  →  𝑃  =  ( 5  ·  ; 1 3 ) ) | 
						
							| 24 | 23 | eleq1d | ⊢ ( 𝑃  =  ; 6 5  →  ( 𝑃  ∈  ℙ  ↔  ( 5  ·  ; 1 3 )  ∈  ℙ ) ) | 
						
							| 25 | 12 24 | mtbiri | ⊢ ( 𝑃  =  ; 6 5  →  ¬  𝑃  ∈  ℙ ) | 
						
							| 26 | 25 | pm2.21d | ⊢ ( 𝑃  =  ; 6 5  →  ( 𝑃  ∈  ℙ  →  𝑃  =  ; ; 1 9 3 ) ) | 
						
							| 27 |  | 4nn0 | ⊢ 4  ∈  ℕ0 | 
						
							| 28 | 27 4 | decnncl | ⊢ ; 4 3  ∈  ℕ | 
						
							| 29 |  | 4nn | ⊢ 4  ∈  ℕ | 
						
							| 30 | 29 8 3 9 | declti | ⊢ 1  <  ; 4 3 | 
						
							| 31 |  | 1lt3 | ⊢ 1  <  3 | 
						
							| 32 |  | eqid | ⊢ ( ; 4 3  ·  3 )  =  ( ; 4 3  ·  3 ) | 
						
							| 33 | 28 4 30 31 32 | nprmi | ⊢ ¬  ( ; 4 3  ·  3 )  ∈  ℙ | 
						
							| 34 |  | id | ⊢ ( 𝑃  =  ; ; 1 2 9  →  𝑃  =  ; ; 1 2 9 ) | 
						
							| 35 |  | eqid | ⊢ ; 4 3  =  ; 4 3 | 
						
							| 36 |  | 4t3e12 | ⊢ ( 4  ·  3 )  =  ; 1 2 | 
						
							| 37 |  | 3t3e9 | ⊢ ( 3  ·  3 )  =  9 | 
						
							| 38 | 8 27 8 35 36 37 | decmul1 | ⊢ ( ; 4 3  ·  3 )  =  ; ; 1 2 9 | 
						
							| 39 | 34 38 | eqtr4di | ⊢ ( 𝑃  =  ; ; 1 2 9  →  𝑃  =  ( ; 4 3  ·  3 ) ) | 
						
							| 40 | 39 | eleq1d | ⊢ ( 𝑃  =  ; ; 1 2 9  →  ( 𝑃  ∈  ℙ  ↔  ( ; 4 3  ·  3 )  ∈  ℙ ) ) | 
						
							| 41 | 33 40 | mtbiri | ⊢ ( 𝑃  =  ; ; 1 2 9  →  ¬  𝑃  ∈  ℙ ) | 
						
							| 42 | 41 | pm2.21d | ⊢ ( 𝑃  =  ; ; 1 2 9  →  ( 𝑃  ∈  ℙ  →  𝑃  =  ; ; 1 9 3 ) ) | 
						
							| 43 |  | ax-1 | ⊢ ( 𝑃  =  ; ; 1 9 3  →  ( 𝑃  ∈  ℙ  →  𝑃  =  ; ; 1 9 3 ) ) | 
						
							| 44 | 26 42 43 | 3jaoi | ⊢ ( ( 𝑃  =  ; 6 5  ∨  𝑃  =  ; ; 1 2 9  ∨  𝑃  =  ; ; 1 9 3 )  →  ( 𝑃  ∈  ℙ  →  𝑃  =  ; ; 1 9 3 ) ) | 
						
							| 45 | 44 | com12 | ⊢ ( 𝑃  ∈  ℙ  →  ( ( 𝑃  =  ; 6 5  ∨  𝑃  =  ; ; 1 2 9  ∨  𝑃  =  ; ; 1 9 3 )  →  𝑃  =  ; ; 1 9 3 ) ) | 
						
							| 46 | 45 | 3ad2ant1 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑃  ∥  ( FermatNo ‘ 4 )  ∧  𝑃  ≤  ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) )  →  ( ( 𝑃  =  ; 6 5  ∨  𝑃  =  ; ; 1 2 9  ∨  𝑃  =  ; ; 1 9 3 )  →  𝑃  =  ; ; 1 9 3 ) ) | 
						
							| 47 | 1 46 | mpd | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑃  ∥  ( FermatNo ‘ 4 )  ∧  𝑃  ≤  ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) )  →  𝑃  =  ; ; 1 9 3 ) |