Metamath Proof Explorer


Theorem fmtno4prmfac193

Description: If P was a (prime) factor of the fourth Fermat number, it would be 193. (Contributed by AV, 28-Jul-2021)

Ref Expression
Assertion fmtno4prmfac193 PPFermatNo4PFermatNo4P=193

Proof

Step Hyp Ref Expression
1 fmtno4prmfac PPFermatNo4PFermatNo4P=65P=129P=193
2 5nn 5
3 1nn0 10
4 3nn 3
5 3 4 decnncl 13
6 1lt5 1<5
7 1nn 1
8 3nn0 30
9 1lt10 1<10
10 7 8 3 9 declti 1<13
11 eqid 513=513
12 2 5 6 10 11 nprmi ¬513
13 id P=65P=65
14 5nn0 50
15 eqid 13=13
16 5cn 5
17 16 mulridi 51=5
18 17 oveq1i 51+1=5+1
19 5p1e6 5+1=6
20 18 19 eqtri 51+1=6
21 5t3e15 53=15
22 14 3 8 15 14 3 20 21 decmul2c 513=65
23 13 22 eqtr4di P=65P=513
24 23 eleq1d P=65P513
25 12 24 mtbiri P=65¬P
26 25 pm2.21d P=65PP=193
27 4nn0 40
28 27 4 decnncl 43
29 4nn 4
30 29 8 3 9 declti 1<43
31 1lt3 1<3
32 eqid 433=433
33 28 4 30 31 32 nprmi ¬433
34 id P=129P=129
35 eqid 43=43
36 4t3e12 43=12
37 3t3e9 33=9
38 8 27 8 35 36 37 decmul1 433=129
39 34 38 eqtr4di P=129P=433
40 39 eleq1d P=129P433
41 33 40 mtbiri P=129¬P
42 41 pm2.21d P=129PP=193
43 ax-1 P=193PP=193
44 26 42 43 3jaoi P=65P=129P=193PP=193
45 44 com12 PP=65P=129P=193P=193
46 45 3ad2ant1 PPFermatNo4PFermatNo4P=65P=129P=193P=193
47 1 46 mpd PPFermatNo4PFermatNo4P=193