| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2z |
|
| 2 |
|
4z |
|
| 3 |
|
2re |
|
| 4 |
|
4re |
|
| 5 |
|
2lt4 |
|
| 6 |
3 4 5
|
ltleii |
|
| 7 |
|
eluz2 |
|
| 8 |
1 2 6 7
|
mpbir3an |
|
| 9 |
|
fmtnoprmfac2 |
|
| 10 |
8 9
|
mp3an1 |
|
| 11 |
|
elnnuz |
|
| 12 |
|
4nn |
|
| 13 |
|
nnuz |
|
| 14 |
12 13
|
eleqtri |
|
| 15 |
|
fzouzsplit |
|
| 16 |
14 15
|
ax-mp |
|
| 17 |
16
|
eleq2i |
|
| 18 |
|
elun |
|
| 19 |
|
fzo1to4tp |
|
| 20 |
19
|
eleq2i |
|
| 21 |
|
vex |
|
| 22 |
21
|
eltp |
|
| 23 |
20 22
|
bitri |
|
| 24 |
23
|
orbi1i |
|
| 25 |
18 24
|
bitri |
|
| 26 |
11 17 25
|
3bitri |
|
| 27 |
|
4p2e6 |
|
| 28 |
27
|
oveq2i |
|
| 29 |
|
2exp6 |
|
| 30 |
28 29
|
eqtri |
|
| 31 |
30
|
oveq2i |
|
| 32 |
31
|
oveq1i |
|
| 33 |
32
|
eqeq2i |
|
| 34 |
|
simpl |
|
| 35 |
|
oveq1 |
|
| 36 |
|
6nn0 |
|
| 37 |
|
4nn0 |
|
| 38 |
36 37
|
deccl |
|
| 39 |
38
|
nn0cni |
|
| 40 |
39
|
mullidi |
|
| 41 |
35 40
|
eqtrdi |
|
| 42 |
41
|
oveq1d |
|
| 43 |
|
4p1e5 |
|
| 44 |
|
eqid |
|
| 45 |
36 37 43 44
|
decsuc |
|
| 46 |
42 45
|
eqtrdi |
|
| 47 |
46
|
adantl |
|
| 48 |
34 47
|
eqtrd |
|
| 49 |
48
|
ex |
|
| 50 |
|
simpl |
|
| 51 |
|
oveq1 |
|
| 52 |
|
2nn0 |
|
| 53 |
|
6cn |
|
| 54 |
|
2cn |
|
| 55 |
|
6t2e12 |
|
| 56 |
53 54 55
|
mulcomli |
|
| 57 |
56
|
eqcomi |
|
| 58 |
|
4cn |
|
| 59 |
|
4t2e8 |
|
| 60 |
58 54 59
|
mulcomli |
|
| 61 |
60
|
eqcomi |
|
| 62 |
36 37 52 57 61
|
decmul10add |
|
| 63 |
51 62
|
eqtrdi |
|
| 64 |
63
|
oveq1d |
|
| 65 |
|
1nn0 |
|
| 66 |
65 52
|
deccl |
|
| 67 |
|
8nn0 |
|
| 68 |
|
8p1e9 |
|
| 69 |
|
0nn0 |
|
| 70 |
|
eqid |
|
| 71 |
|
8cn |
|
| 72 |
71
|
addlidi |
|
| 73 |
66 69 67 70 72
|
decaddi |
|
| 74 |
66 67 68 73
|
decsuc |
|
| 75 |
64 74
|
eqtrdi |
|
| 76 |
75
|
adantl |
|
| 77 |
50 76
|
eqtrd |
|
| 78 |
77
|
ex |
|
| 79 |
|
simpl |
|
| 80 |
|
oveq1 |
|
| 81 |
|
3nn0 |
|
| 82 |
|
6t3e18 |
|
| 83 |
|
3cn |
|
| 84 |
53 83
|
mulcomi |
|
| 85 |
82 84
|
eqtr3i |
|
| 86 |
|
4t3e12 |
|
| 87 |
58 83
|
mulcomi |
|
| 88 |
86 87
|
eqtr3i |
|
| 89 |
36 37 81 85 88
|
decmul10add |
|
| 90 |
80 89
|
eqtrdi |
|
| 91 |
90
|
oveq1d |
|
| 92 |
|
9nn0 |
|
| 93 |
65 92
|
deccl |
|
| 94 |
|
2p1e3 |
|
| 95 |
65 67
|
deccl |
|
| 96 |
|
eqid |
|
| 97 |
|
eqid |
|
| 98 |
|
eqid |
|
| 99 |
65 67 68 98
|
decsuc |
|
| 100 |
54
|
addlidi |
|
| 101 |
95 69 65 52 96 97 99 100
|
decadd |
|
| 102 |
93 52 94 101
|
decsuc |
|
| 103 |
91 102
|
eqtrdi |
|
| 104 |
103
|
adantl |
|
| 105 |
79 104
|
eqtrd |
|
| 106 |
105
|
ex |
|
| 107 |
49 78 106
|
3orim123d |
|
| 108 |
107
|
a1i |
|
| 109 |
108
|
com13 |
|
| 110 |
|
fmtno4sqrt |
|
| 111 |
110
|
breq2i |
|
| 112 |
|
breq1 |
|
| 113 |
112
|
adantl |
|
| 114 |
|
eluz2 |
|
| 115 |
|
6t4e24 |
|
| 116 |
53 58 115
|
mulcomli |
|
| 117 |
52 37 43 116
|
decsuc |
|
| 118 |
|
4t4e16 |
|
| 119 |
37 36 37 44 36 65 117 118
|
decmul2c |
|
| 120 |
|
zre |
|
| 121 |
38
|
nn0rei |
|
| 122 |
36 12
|
decnncl |
|
| 123 |
122
|
nngt0i |
|
| 124 |
121 123
|
pm3.2i |
|
| 125 |
124
|
a1i |
|
| 126 |
|
lemul1 |
|
| 127 |
4 120 125 126
|
mp3an2i |
|
| 128 |
127
|
biimpa |
|
| 129 |
119 128
|
eqbrtrrid |
|
| 130 |
|
5nn0 |
|
| 131 |
52 130
|
deccl |
|
| 132 |
131 36
|
deccl |
|
| 133 |
132
|
nn0zi |
|
| 134 |
|
id |
|
| 135 |
38
|
nn0zi |
|
| 136 |
135
|
a1i |
|
| 137 |
134 136
|
zmulcld |
|
| 138 |
137
|
adantr |
|
| 139 |
|
zleltp1 |
|
| 140 |
133 138 139
|
sylancr |
|
| 141 |
129 140
|
mpbid |
|
| 142 |
141
|
3adant1 |
|
| 143 |
114 142
|
sylbi |
|
| 144 |
132
|
nn0rei |
|
| 145 |
144
|
a1i |
|
| 146 |
|
eluzelre |
|
| 147 |
121
|
a1i |
|
| 148 |
146 147
|
remulcld |
|
| 149 |
|
peano2re |
|
| 150 |
148 149
|
syl |
|
| 151 |
145 150
|
ltnled |
|
| 152 |
143 151
|
mpbid |
|
| 153 |
152
|
pm2.21d |
|
| 154 |
153
|
adantr |
|
| 155 |
113 154
|
sylbid |
|
| 156 |
111 155
|
biimtrid |
|
| 157 |
156
|
ex |
|
| 158 |
109 157
|
jaoi |
|
| 159 |
158
|
adantr |
|
| 160 |
33 159
|
biimtrid |
|
| 161 |
160
|
ex |
|
| 162 |
26 161
|
sylbi |
|
| 163 |
162
|
com12 |
|
| 164 |
163
|
rexlimdv |
|
| 165 |
10 164
|
mpd |
|
| 166 |
165
|
3impia |
|