| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2z |  |-  2 e. ZZ | 
						
							| 2 |  | 4z |  |-  4 e. ZZ | 
						
							| 3 |  | 2re |  |-  2 e. RR | 
						
							| 4 |  | 4re |  |-  4 e. RR | 
						
							| 5 |  | 2lt4 |  |-  2 < 4 | 
						
							| 6 | 3 4 5 | ltleii |  |-  2 <_ 4 | 
						
							| 7 |  | eluz2 |  |-  ( 4 e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ 4 e. ZZ /\ 2 <_ 4 ) ) | 
						
							| 8 | 1 2 6 7 | mpbir3an |  |-  4 e. ( ZZ>= ` 2 ) | 
						
							| 9 |  | fmtnoprmfac2 |  |-  ( ( 4 e. ( ZZ>= ` 2 ) /\ P e. Prime /\ P || ( FermatNo ` 4 ) ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( 4 + 2 ) ) ) + 1 ) ) | 
						
							| 10 | 8 9 | mp3an1 |  |-  ( ( P e. Prime /\ P || ( FermatNo ` 4 ) ) -> E. k e. NN P = ( ( k x. ( 2 ^ ( 4 + 2 ) ) ) + 1 ) ) | 
						
							| 11 |  | elnnuz |  |-  ( k e. NN <-> k e. ( ZZ>= ` 1 ) ) | 
						
							| 12 |  | 4nn |  |-  4 e. NN | 
						
							| 13 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 14 | 12 13 | eleqtri |  |-  4 e. ( ZZ>= ` 1 ) | 
						
							| 15 |  | fzouzsplit |  |-  ( 4 e. ( ZZ>= ` 1 ) -> ( ZZ>= ` 1 ) = ( ( 1 ..^ 4 ) u. ( ZZ>= ` 4 ) ) ) | 
						
							| 16 | 14 15 | ax-mp |  |-  ( ZZ>= ` 1 ) = ( ( 1 ..^ 4 ) u. ( ZZ>= ` 4 ) ) | 
						
							| 17 | 16 | eleq2i |  |-  ( k e. ( ZZ>= ` 1 ) <-> k e. ( ( 1 ..^ 4 ) u. ( ZZ>= ` 4 ) ) ) | 
						
							| 18 |  | elun |  |-  ( k e. ( ( 1 ..^ 4 ) u. ( ZZ>= ` 4 ) ) <-> ( k e. ( 1 ..^ 4 ) \/ k e. ( ZZ>= ` 4 ) ) ) | 
						
							| 19 |  | fzo1to4tp |  |-  ( 1 ..^ 4 ) = { 1 , 2 , 3 } | 
						
							| 20 | 19 | eleq2i |  |-  ( k e. ( 1 ..^ 4 ) <-> k e. { 1 , 2 , 3 } ) | 
						
							| 21 |  | vex |  |-  k e. _V | 
						
							| 22 | 21 | eltp |  |-  ( k e. { 1 , 2 , 3 } <-> ( k = 1 \/ k = 2 \/ k = 3 ) ) | 
						
							| 23 | 20 22 | bitri |  |-  ( k e. ( 1 ..^ 4 ) <-> ( k = 1 \/ k = 2 \/ k = 3 ) ) | 
						
							| 24 | 23 | orbi1i |  |-  ( ( k e. ( 1 ..^ 4 ) \/ k e. ( ZZ>= ` 4 ) ) <-> ( ( k = 1 \/ k = 2 \/ k = 3 ) \/ k e. ( ZZ>= ` 4 ) ) ) | 
						
							| 25 | 18 24 | bitri |  |-  ( k e. ( ( 1 ..^ 4 ) u. ( ZZ>= ` 4 ) ) <-> ( ( k = 1 \/ k = 2 \/ k = 3 ) \/ k e. ( ZZ>= ` 4 ) ) ) | 
						
							| 26 | 11 17 25 | 3bitri |  |-  ( k e. NN <-> ( ( k = 1 \/ k = 2 \/ k = 3 ) \/ k e. ( ZZ>= ` 4 ) ) ) | 
						
							| 27 |  | 4p2e6 |  |-  ( 4 + 2 ) = 6 | 
						
							| 28 | 27 | oveq2i |  |-  ( 2 ^ ( 4 + 2 ) ) = ( 2 ^ 6 ) | 
						
							| 29 |  | 2exp6 |  |-  ( 2 ^ 6 ) = ; 6 4 | 
						
							| 30 | 28 29 | eqtri |  |-  ( 2 ^ ( 4 + 2 ) ) = ; 6 4 | 
						
							| 31 | 30 | oveq2i |  |-  ( k x. ( 2 ^ ( 4 + 2 ) ) ) = ( k x. ; 6 4 ) | 
						
							| 32 | 31 | oveq1i |  |-  ( ( k x. ( 2 ^ ( 4 + 2 ) ) ) + 1 ) = ( ( k x. ; 6 4 ) + 1 ) | 
						
							| 33 | 32 | eqeq2i |  |-  ( P = ( ( k x. ( 2 ^ ( 4 + 2 ) ) ) + 1 ) <-> P = ( ( k x. ; 6 4 ) + 1 ) ) | 
						
							| 34 |  | simpl |  |-  ( ( P = ( ( k x. ; 6 4 ) + 1 ) /\ k = 1 ) -> P = ( ( k x. ; 6 4 ) + 1 ) ) | 
						
							| 35 |  | oveq1 |  |-  ( k = 1 -> ( k x. ; 6 4 ) = ( 1 x. ; 6 4 ) ) | 
						
							| 36 |  | 6nn0 |  |-  6 e. NN0 | 
						
							| 37 |  | 4nn0 |  |-  4 e. NN0 | 
						
							| 38 | 36 37 | deccl |  |-  ; 6 4 e. NN0 | 
						
							| 39 | 38 | nn0cni |  |-  ; 6 4 e. CC | 
						
							| 40 | 39 | mullidi |  |-  ( 1 x. ; 6 4 ) = ; 6 4 | 
						
							| 41 | 35 40 | eqtrdi |  |-  ( k = 1 -> ( k x. ; 6 4 ) = ; 6 4 ) | 
						
							| 42 | 41 | oveq1d |  |-  ( k = 1 -> ( ( k x. ; 6 4 ) + 1 ) = ( ; 6 4 + 1 ) ) | 
						
							| 43 |  | 4p1e5 |  |-  ( 4 + 1 ) = 5 | 
						
							| 44 |  | eqid |  |-  ; 6 4 = ; 6 4 | 
						
							| 45 | 36 37 43 44 | decsuc |  |-  ( ; 6 4 + 1 ) = ; 6 5 | 
						
							| 46 | 42 45 | eqtrdi |  |-  ( k = 1 -> ( ( k x. ; 6 4 ) + 1 ) = ; 6 5 ) | 
						
							| 47 | 46 | adantl |  |-  ( ( P = ( ( k x. ; 6 4 ) + 1 ) /\ k = 1 ) -> ( ( k x. ; 6 4 ) + 1 ) = ; 6 5 ) | 
						
							| 48 | 34 47 | eqtrd |  |-  ( ( P = ( ( k x. ; 6 4 ) + 1 ) /\ k = 1 ) -> P = ; 6 5 ) | 
						
							| 49 | 48 | ex |  |-  ( P = ( ( k x. ; 6 4 ) + 1 ) -> ( k = 1 -> P = ; 6 5 ) ) | 
						
							| 50 |  | simpl |  |-  ( ( P = ( ( k x. ; 6 4 ) + 1 ) /\ k = 2 ) -> P = ( ( k x. ; 6 4 ) + 1 ) ) | 
						
							| 51 |  | oveq1 |  |-  ( k = 2 -> ( k x. ; 6 4 ) = ( 2 x. ; 6 4 ) ) | 
						
							| 52 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 53 |  | 6cn |  |-  6 e. CC | 
						
							| 54 |  | 2cn |  |-  2 e. CC | 
						
							| 55 |  | 6t2e12 |  |-  ( 6 x. 2 ) = ; 1 2 | 
						
							| 56 | 53 54 55 | mulcomli |  |-  ( 2 x. 6 ) = ; 1 2 | 
						
							| 57 | 56 | eqcomi |  |-  ; 1 2 = ( 2 x. 6 ) | 
						
							| 58 |  | 4cn |  |-  4 e. CC | 
						
							| 59 |  | 4t2e8 |  |-  ( 4 x. 2 ) = 8 | 
						
							| 60 | 58 54 59 | mulcomli |  |-  ( 2 x. 4 ) = 8 | 
						
							| 61 | 60 | eqcomi |  |-  8 = ( 2 x. 4 ) | 
						
							| 62 | 36 37 52 57 61 | decmul10add |  |-  ( 2 x. ; 6 4 ) = ( ; ; 1 2 0 + 8 ) | 
						
							| 63 | 51 62 | eqtrdi |  |-  ( k = 2 -> ( k x. ; 6 4 ) = ( ; ; 1 2 0 + 8 ) ) | 
						
							| 64 | 63 | oveq1d |  |-  ( k = 2 -> ( ( k x. ; 6 4 ) + 1 ) = ( ( ; ; 1 2 0 + 8 ) + 1 ) ) | 
						
							| 65 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 66 | 65 52 | deccl |  |-  ; 1 2 e. NN0 | 
						
							| 67 |  | 8nn0 |  |-  8 e. NN0 | 
						
							| 68 |  | 8p1e9 |  |-  ( 8 + 1 ) = 9 | 
						
							| 69 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 70 |  | eqid |  |-  ; ; 1 2 0 = ; ; 1 2 0 | 
						
							| 71 |  | 8cn |  |-  8 e. CC | 
						
							| 72 | 71 | addlidi |  |-  ( 0 + 8 ) = 8 | 
						
							| 73 | 66 69 67 70 72 | decaddi |  |-  ( ; ; 1 2 0 + 8 ) = ; ; 1 2 8 | 
						
							| 74 | 66 67 68 73 | decsuc |  |-  ( ( ; ; 1 2 0 + 8 ) + 1 ) = ; ; 1 2 9 | 
						
							| 75 | 64 74 | eqtrdi |  |-  ( k = 2 -> ( ( k x. ; 6 4 ) + 1 ) = ; ; 1 2 9 ) | 
						
							| 76 | 75 | adantl |  |-  ( ( P = ( ( k x. ; 6 4 ) + 1 ) /\ k = 2 ) -> ( ( k x. ; 6 4 ) + 1 ) = ; ; 1 2 9 ) | 
						
							| 77 | 50 76 | eqtrd |  |-  ( ( P = ( ( k x. ; 6 4 ) + 1 ) /\ k = 2 ) -> P = ; ; 1 2 9 ) | 
						
							| 78 | 77 | ex |  |-  ( P = ( ( k x. ; 6 4 ) + 1 ) -> ( k = 2 -> P = ; ; 1 2 9 ) ) | 
						
							| 79 |  | simpl |  |-  ( ( P = ( ( k x. ; 6 4 ) + 1 ) /\ k = 3 ) -> P = ( ( k x. ; 6 4 ) + 1 ) ) | 
						
							| 80 |  | oveq1 |  |-  ( k = 3 -> ( k x. ; 6 4 ) = ( 3 x. ; 6 4 ) ) | 
						
							| 81 |  | 3nn0 |  |-  3 e. NN0 | 
						
							| 82 |  | 6t3e18 |  |-  ( 6 x. 3 ) = ; 1 8 | 
						
							| 83 |  | 3cn |  |-  3 e. CC | 
						
							| 84 | 53 83 | mulcomi |  |-  ( 6 x. 3 ) = ( 3 x. 6 ) | 
						
							| 85 | 82 84 | eqtr3i |  |-  ; 1 8 = ( 3 x. 6 ) | 
						
							| 86 |  | 4t3e12 |  |-  ( 4 x. 3 ) = ; 1 2 | 
						
							| 87 | 58 83 | mulcomi |  |-  ( 4 x. 3 ) = ( 3 x. 4 ) | 
						
							| 88 | 86 87 | eqtr3i |  |-  ; 1 2 = ( 3 x. 4 ) | 
						
							| 89 | 36 37 81 85 88 | decmul10add |  |-  ( 3 x. ; 6 4 ) = ( ; ; 1 8 0 + ; 1 2 ) | 
						
							| 90 | 80 89 | eqtrdi |  |-  ( k = 3 -> ( k x. ; 6 4 ) = ( ; ; 1 8 0 + ; 1 2 ) ) | 
						
							| 91 | 90 | oveq1d |  |-  ( k = 3 -> ( ( k x. ; 6 4 ) + 1 ) = ( ( ; ; 1 8 0 + ; 1 2 ) + 1 ) ) | 
						
							| 92 |  | 9nn0 |  |-  9 e. NN0 | 
						
							| 93 | 65 92 | deccl |  |-  ; 1 9 e. NN0 | 
						
							| 94 |  | 2p1e3 |  |-  ( 2 + 1 ) = 3 | 
						
							| 95 | 65 67 | deccl |  |-  ; 1 8 e. NN0 | 
						
							| 96 |  | eqid |  |-  ; ; 1 8 0 = ; ; 1 8 0 | 
						
							| 97 |  | eqid |  |-  ; 1 2 = ; 1 2 | 
						
							| 98 |  | eqid |  |-  ; 1 8 = ; 1 8 | 
						
							| 99 | 65 67 68 98 | decsuc |  |-  ( ; 1 8 + 1 ) = ; 1 9 | 
						
							| 100 | 54 | addlidi |  |-  ( 0 + 2 ) = 2 | 
						
							| 101 | 95 69 65 52 96 97 99 100 | decadd |  |-  ( ; ; 1 8 0 + ; 1 2 ) = ; ; 1 9 2 | 
						
							| 102 | 93 52 94 101 | decsuc |  |-  ( ( ; ; 1 8 0 + ; 1 2 ) + 1 ) = ; ; 1 9 3 | 
						
							| 103 | 91 102 | eqtrdi |  |-  ( k = 3 -> ( ( k x. ; 6 4 ) + 1 ) = ; ; 1 9 3 ) | 
						
							| 104 | 103 | adantl |  |-  ( ( P = ( ( k x. ; 6 4 ) + 1 ) /\ k = 3 ) -> ( ( k x. ; 6 4 ) + 1 ) = ; ; 1 9 3 ) | 
						
							| 105 | 79 104 | eqtrd |  |-  ( ( P = ( ( k x. ; 6 4 ) + 1 ) /\ k = 3 ) -> P = ; ; 1 9 3 ) | 
						
							| 106 | 105 | ex |  |-  ( P = ( ( k x. ; 6 4 ) + 1 ) -> ( k = 3 -> P = ; ; 1 9 3 ) ) | 
						
							| 107 | 49 78 106 | 3orim123d |  |-  ( P = ( ( k x. ; 6 4 ) + 1 ) -> ( ( k = 1 \/ k = 2 \/ k = 3 ) -> ( P = ; 6 5 \/ P = ; ; 1 2 9 \/ P = ; ; 1 9 3 ) ) ) | 
						
							| 108 | 107 | a1i |  |-  ( P <_ ( |_ ` ( sqrt ` ( FermatNo ` 4 ) ) ) -> ( P = ( ( k x. ; 6 4 ) + 1 ) -> ( ( k = 1 \/ k = 2 \/ k = 3 ) -> ( P = ; 6 5 \/ P = ; ; 1 2 9 \/ P = ; ; 1 9 3 ) ) ) ) | 
						
							| 109 | 108 | com13 |  |-  ( ( k = 1 \/ k = 2 \/ k = 3 ) -> ( P = ( ( k x. ; 6 4 ) + 1 ) -> ( P <_ ( |_ ` ( sqrt ` ( FermatNo ` 4 ) ) ) -> ( P = ; 6 5 \/ P = ; ; 1 2 9 \/ P = ; ; 1 9 3 ) ) ) ) | 
						
							| 110 |  | fmtno4sqrt |  |-  ( |_ ` ( sqrt ` ( FermatNo ` 4 ) ) ) = ; ; 2 5 6 | 
						
							| 111 | 110 | breq2i |  |-  ( P <_ ( |_ ` ( sqrt ` ( FermatNo ` 4 ) ) ) <-> P <_ ; ; 2 5 6 ) | 
						
							| 112 |  | breq1 |  |-  ( P = ( ( k x. ; 6 4 ) + 1 ) -> ( P <_ ; ; 2 5 6 <-> ( ( k x. ; 6 4 ) + 1 ) <_ ; ; 2 5 6 ) ) | 
						
							| 113 | 112 | adantl |  |-  ( ( k e. ( ZZ>= ` 4 ) /\ P = ( ( k x. ; 6 4 ) + 1 ) ) -> ( P <_ ; ; 2 5 6 <-> ( ( k x. ; 6 4 ) + 1 ) <_ ; ; 2 5 6 ) ) | 
						
							| 114 |  | eluz2 |  |-  ( k e. ( ZZ>= ` 4 ) <-> ( 4 e. ZZ /\ k e. ZZ /\ 4 <_ k ) ) | 
						
							| 115 |  | 6t4e24 |  |-  ( 6 x. 4 ) = ; 2 4 | 
						
							| 116 | 53 58 115 | mulcomli |  |-  ( 4 x. 6 ) = ; 2 4 | 
						
							| 117 | 52 37 43 116 | decsuc |  |-  ( ( 4 x. 6 ) + 1 ) = ; 2 5 | 
						
							| 118 |  | 4t4e16 |  |-  ( 4 x. 4 ) = ; 1 6 | 
						
							| 119 | 37 36 37 44 36 65 117 118 | decmul2c |  |-  ( 4 x. ; 6 4 ) = ; ; 2 5 6 | 
						
							| 120 |  | zre |  |-  ( k e. ZZ -> k e. RR ) | 
						
							| 121 | 38 | nn0rei |  |-  ; 6 4 e. RR | 
						
							| 122 | 36 12 | decnncl |  |-  ; 6 4 e. NN | 
						
							| 123 | 122 | nngt0i |  |-  0 < ; 6 4 | 
						
							| 124 | 121 123 | pm3.2i |  |-  ( ; 6 4 e. RR /\ 0 < ; 6 4 ) | 
						
							| 125 | 124 | a1i |  |-  ( k e. ZZ -> ( ; 6 4 e. RR /\ 0 < ; 6 4 ) ) | 
						
							| 126 |  | lemul1 |  |-  ( ( 4 e. RR /\ k e. RR /\ ( ; 6 4 e. RR /\ 0 < ; 6 4 ) ) -> ( 4 <_ k <-> ( 4 x. ; 6 4 ) <_ ( k x. ; 6 4 ) ) ) | 
						
							| 127 | 4 120 125 126 | mp3an2i |  |-  ( k e. ZZ -> ( 4 <_ k <-> ( 4 x. ; 6 4 ) <_ ( k x. ; 6 4 ) ) ) | 
						
							| 128 | 127 | biimpa |  |-  ( ( k e. ZZ /\ 4 <_ k ) -> ( 4 x. ; 6 4 ) <_ ( k x. ; 6 4 ) ) | 
						
							| 129 | 119 128 | eqbrtrrid |  |-  ( ( k e. ZZ /\ 4 <_ k ) -> ; ; 2 5 6 <_ ( k x. ; 6 4 ) ) | 
						
							| 130 |  | 5nn0 |  |-  5 e. NN0 | 
						
							| 131 | 52 130 | deccl |  |-  ; 2 5 e. NN0 | 
						
							| 132 | 131 36 | deccl |  |-  ; ; 2 5 6 e. NN0 | 
						
							| 133 | 132 | nn0zi |  |-  ; ; 2 5 6 e. ZZ | 
						
							| 134 |  | id |  |-  ( k e. ZZ -> k e. ZZ ) | 
						
							| 135 | 38 | nn0zi |  |-  ; 6 4 e. ZZ | 
						
							| 136 | 135 | a1i |  |-  ( k e. ZZ -> ; 6 4 e. ZZ ) | 
						
							| 137 | 134 136 | zmulcld |  |-  ( k e. ZZ -> ( k x. ; 6 4 ) e. ZZ ) | 
						
							| 138 | 137 | adantr |  |-  ( ( k e. ZZ /\ 4 <_ k ) -> ( k x. ; 6 4 ) e. ZZ ) | 
						
							| 139 |  | zleltp1 |  |-  ( ( ; ; 2 5 6 e. ZZ /\ ( k x. ; 6 4 ) e. ZZ ) -> ( ; ; 2 5 6 <_ ( k x. ; 6 4 ) <-> ; ; 2 5 6 < ( ( k x. ; 6 4 ) + 1 ) ) ) | 
						
							| 140 | 133 138 139 | sylancr |  |-  ( ( k e. ZZ /\ 4 <_ k ) -> ( ; ; 2 5 6 <_ ( k x. ; 6 4 ) <-> ; ; 2 5 6 < ( ( k x. ; 6 4 ) + 1 ) ) ) | 
						
							| 141 | 129 140 | mpbid |  |-  ( ( k e. ZZ /\ 4 <_ k ) -> ; ; 2 5 6 < ( ( k x. ; 6 4 ) + 1 ) ) | 
						
							| 142 | 141 | 3adant1 |  |-  ( ( 4 e. ZZ /\ k e. ZZ /\ 4 <_ k ) -> ; ; 2 5 6 < ( ( k x. ; 6 4 ) + 1 ) ) | 
						
							| 143 | 114 142 | sylbi |  |-  ( k e. ( ZZ>= ` 4 ) -> ; ; 2 5 6 < ( ( k x. ; 6 4 ) + 1 ) ) | 
						
							| 144 | 132 | nn0rei |  |-  ; ; 2 5 6 e. RR | 
						
							| 145 | 144 | a1i |  |-  ( k e. ( ZZ>= ` 4 ) -> ; ; 2 5 6 e. RR ) | 
						
							| 146 |  | eluzelre |  |-  ( k e. ( ZZ>= ` 4 ) -> k e. RR ) | 
						
							| 147 | 121 | a1i |  |-  ( k e. ( ZZ>= ` 4 ) -> ; 6 4 e. RR ) | 
						
							| 148 | 146 147 | remulcld |  |-  ( k e. ( ZZ>= ` 4 ) -> ( k x. ; 6 4 ) e. RR ) | 
						
							| 149 |  | peano2re |  |-  ( ( k x. ; 6 4 ) e. RR -> ( ( k x. ; 6 4 ) + 1 ) e. RR ) | 
						
							| 150 | 148 149 | syl |  |-  ( k e. ( ZZ>= ` 4 ) -> ( ( k x. ; 6 4 ) + 1 ) e. RR ) | 
						
							| 151 | 145 150 | ltnled |  |-  ( k e. ( ZZ>= ` 4 ) -> ( ; ; 2 5 6 < ( ( k x. ; 6 4 ) + 1 ) <-> -. ( ( k x. ; 6 4 ) + 1 ) <_ ; ; 2 5 6 ) ) | 
						
							| 152 | 143 151 | mpbid |  |-  ( k e. ( ZZ>= ` 4 ) -> -. ( ( k x. ; 6 4 ) + 1 ) <_ ; ; 2 5 6 ) | 
						
							| 153 | 152 | pm2.21d |  |-  ( k e. ( ZZ>= ` 4 ) -> ( ( ( k x. ; 6 4 ) + 1 ) <_ ; ; 2 5 6 -> ( P = ; 6 5 \/ P = ; ; 1 2 9 \/ P = ; ; 1 9 3 ) ) ) | 
						
							| 154 | 153 | adantr |  |-  ( ( k e. ( ZZ>= ` 4 ) /\ P = ( ( k x. ; 6 4 ) + 1 ) ) -> ( ( ( k x. ; 6 4 ) + 1 ) <_ ; ; 2 5 6 -> ( P = ; 6 5 \/ P = ; ; 1 2 9 \/ P = ; ; 1 9 3 ) ) ) | 
						
							| 155 | 113 154 | sylbid |  |-  ( ( k e. ( ZZ>= ` 4 ) /\ P = ( ( k x. ; 6 4 ) + 1 ) ) -> ( P <_ ; ; 2 5 6 -> ( P = ; 6 5 \/ P = ; ; 1 2 9 \/ P = ; ; 1 9 3 ) ) ) | 
						
							| 156 | 111 155 | biimtrid |  |-  ( ( k e. ( ZZ>= ` 4 ) /\ P = ( ( k x. ; 6 4 ) + 1 ) ) -> ( P <_ ( |_ ` ( sqrt ` ( FermatNo ` 4 ) ) ) -> ( P = ; 6 5 \/ P = ; ; 1 2 9 \/ P = ; ; 1 9 3 ) ) ) | 
						
							| 157 | 156 | ex |  |-  ( k e. ( ZZ>= ` 4 ) -> ( P = ( ( k x. ; 6 4 ) + 1 ) -> ( P <_ ( |_ ` ( sqrt ` ( FermatNo ` 4 ) ) ) -> ( P = ; 6 5 \/ P = ; ; 1 2 9 \/ P = ; ; 1 9 3 ) ) ) ) | 
						
							| 158 | 109 157 | jaoi |  |-  ( ( ( k = 1 \/ k = 2 \/ k = 3 ) \/ k e. ( ZZ>= ` 4 ) ) -> ( P = ( ( k x. ; 6 4 ) + 1 ) -> ( P <_ ( |_ ` ( sqrt ` ( FermatNo ` 4 ) ) ) -> ( P = ; 6 5 \/ P = ; ; 1 2 9 \/ P = ; ; 1 9 3 ) ) ) ) | 
						
							| 159 | 158 | adantr |  |-  ( ( ( ( k = 1 \/ k = 2 \/ k = 3 ) \/ k e. ( ZZ>= ` 4 ) ) /\ ( P e. Prime /\ P || ( FermatNo ` 4 ) ) ) -> ( P = ( ( k x. ; 6 4 ) + 1 ) -> ( P <_ ( |_ ` ( sqrt ` ( FermatNo ` 4 ) ) ) -> ( P = ; 6 5 \/ P = ; ; 1 2 9 \/ P = ; ; 1 9 3 ) ) ) ) | 
						
							| 160 | 33 159 | biimtrid |  |-  ( ( ( ( k = 1 \/ k = 2 \/ k = 3 ) \/ k e. ( ZZ>= ` 4 ) ) /\ ( P e. Prime /\ P || ( FermatNo ` 4 ) ) ) -> ( P = ( ( k x. ( 2 ^ ( 4 + 2 ) ) ) + 1 ) -> ( P <_ ( |_ ` ( sqrt ` ( FermatNo ` 4 ) ) ) -> ( P = ; 6 5 \/ P = ; ; 1 2 9 \/ P = ; ; 1 9 3 ) ) ) ) | 
						
							| 161 | 160 | ex |  |-  ( ( ( k = 1 \/ k = 2 \/ k = 3 ) \/ k e. ( ZZ>= ` 4 ) ) -> ( ( P e. Prime /\ P || ( FermatNo ` 4 ) ) -> ( P = ( ( k x. ( 2 ^ ( 4 + 2 ) ) ) + 1 ) -> ( P <_ ( |_ ` ( sqrt ` ( FermatNo ` 4 ) ) ) -> ( P = ; 6 5 \/ P = ; ; 1 2 9 \/ P = ; ; 1 9 3 ) ) ) ) ) | 
						
							| 162 | 26 161 | sylbi |  |-  ( k e. NN -> ( ( P e. Prime /\ P || ( FermatNo ` 4 ) ) -> ( P = ( ( k x. ( 2 ^ ( 4 + 2 ) ) ) + 1 ) -> ( P <_ ( |_ ` ( sqrt ` ( FermatNo ` 4 ) ) ) -> ( P = ; 6 5 \/ P = ; ; 1 2 9 \/ P = ; ; 1 9 3 ) ) ) ) ) | 
						
							| 163 | 162 | com12 |  |-  ( ( P e. Prime /\ P || ( FermatNo ` 4 ) ) -> ( k e. NN -> ( P = ( ( k x. ( 2 ^ ( 4 + 2 ) ) ) + 1 ) -> ( P <_ ( |_ ` ( sqrt ` ( FermatNo ` 4 ) ) ) -> ( P = ; 6 5 \/ P = ; ; 1 2 9 \/ P = ; ; 1 9 3 ) ) ) ) ) | 
						
							| 164 | 163 | rexlimdv |  |-  ( ( P e. Prime /\ P || ( FermatNo ` 4 ) ) -> ( E. k e. NN P = ( ( k x. ( 2 ^ ( 4 + 2 ) ) ) + 1 ) -> ( P <_ ( |_ ` ( sqrt ` ( FermatNo ` 4 ) ) ) -> ( P = ; 6 5 \/ P = ; ; 1 2 9 \/ P = ; ; 1 9 3 ) ) ) ) | 
						
							| 165 | 10 164 | mpd |  |-  ( ( P e. Prime /\ P || ( FermatNo ` 4 ) ) -> ( P <_ ( |_ ` ( sqrt ` ( FermatNo ` 4 ) ) ) -> ( P = ; 6 5 \/ P = ; ; 1 2 9 \/ P = ; ; 1 9 3 ) ) ) | 
						
							| 166 | 165 | 3impia |  |-  ( ( P e. Prime /\ P || ( FermatNo ` 4 ) /\ P <_ ( |_ ` ( sqrt ` ( FermatNo ` 4 ) ) ) ) -> ( P = ; 6 5 \/ P = ; ; 1 2 9 \/ P = ; ; 1 9 3 ) ) |