Metamath Proof Explorer


Theorem 4t4e16

Description: 4 times 4 equals 16. (Contributed by Mario Carneiro, 19-Apr-2015)

Ref Expression
Assertion 4t4e16
|- ( 4 x. 4 ) = ; 1 6

Proof

Step Hyp Ref Expression
1 4nn0
 |-  4 e. NN0
2 3nn0
 |-  3 e. NN0
3 df-4
 |-  4 = ( 3 + 1 )
4 4t3e12
 |-  ( 4 x. 3 ) = ; 1 2
5 1nn0
 |-  1 e. NN0
6 2nn0
 |-  2 e. NN0
7 eqid
 |-  ; 1 2 = ; 1 2
8 4cn
 |-  4 e. CC
9 2cn
 |-  2 e. CC
10 4p2e6
 |-  ( 4 + 2 ) = 6
11 8 9 10 addcomli
 |-  ( 2 + 4 ) = 6
12 5 6 1 7 11 decaddi
 |-  ( ; 1 2 + 4 ) = ; 1 6
13 1 2 3 4 12 4t3lem
 |-  ( 4 x. 4 ) = ; 1 6