Step |
Hyp |
Ref |
Expression |
1 |
|
2z |
⊢ 2 ∈ ℤ |
2 |
|
4z |
⊢ 4 ∈ ℤ |
3 |
|
2re |
⊢ 2 ∈ ℝ |
4 |
|
4re |
⊢ 4 ∈ ℝ |
5 |
|
2lt4 |
⊢ 2 < 4 |
6 |
3 4 5
|
ltleii |
⊢ 2 ≤ 4 |
7 |
|
eluz2 |
⊢ ( 4 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 2 ∈ ℤ ∧ 4 ∈ ℤ ∧ 2 ≤ 4 ) ) |
8 |
1 2 6 7
|
mpbir3an |
⊢ 4 ∈ ( ℤ≥ ‘ 2 ) |
9 |
|
fmtnoprmfac2 |
⊢ ( ( 4 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( FermatNo ‘ 4 ) ) → ∃ 𝑘 ∈ ℕ 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 4 + 2 ) ) ) + 1 ) ) |
10 |
8 9
|
mp3an1 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( FermatNo ‘ 4 ) ) → ∃ 𝑘 ∈ ℕ 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 4 + 2 ) ) ) + 1 ) ) |
11 |
|
elnnuz |
⊢ ( 𝑘 ∈ ℕ ↔ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
12 |
|
4nn |
⊢ 4 ∈ ℕ |
13 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
14 |
12 13
|
eleqtri |
⊢ 4 ∈ ( ℤ≥ ‘ 1 ) |
15 |
|
fzouzsplit |
⊢ ( 4 ∈ ( ℤ≥ ‘ 1 ) → ( ℤ≥ ‘ 1 ) = ( ( 1 ..^ 4 ) ∪ ( ℤ≥ ‘ 4 ) ) ) |
16 |
14 15
|
ax-mp |
⊢ ( ℤ≥ ‘ 1 ) = ( ( 1 ..^ 4 ) ∪ ( ℤ≥ ‘ 4 ) ) |
17 |
16
|
eleq2i |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 1 ) ↔ 𝑘 ∈ ( ( 1 ..^ 4 ) ∪ ( ℤ≥ ‘ 4 ) ) ) |
18 |
|
elun |
⊢ ( 𝑘 ∈ ( ( 1 ..^ 4 ) ∪ ( ℤ≥ ‘ 4 ) ) ↔ ( 𝑘 ∈ ( 1 ..^ 4 ) ∨ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ) ) |
19 |
|
fzo1to4tp |
⊢ ( 1 ..^ 4 ) = { 1 , 2 , 3 } |
20 |
19
|
eleq2i |
⊢ ( 𝑘 ∈ ( 1 ..^ 4 ) ↔ 𝑘 ∈ { 1 , 2 , 3 } ) |
21 |
|
vex |
⊢ 𝑘 ∈ V |
22 |
21
|
eltp |
⊢ ( 𝑘 ∈ { 1 , 2 , 3 } ↔ ( 𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3 ) ) |
23 |
20 22
|
bitri |
⊢ ( 𝑘 ∈ ( 1 ..^ 4 ) ↔ ( 𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3 ) ) |
24 |
23
|
orbi1i |
⊢ ( ( 𝑘 ∈ ( 1 ..^ 4 ) ∨ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ) ↔ ( ( 𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3 ) ∨ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ) ) |
25 |
18 24
|
bitri |
⊢ ( 𝑘 ∈ ( ( 1 ..^ 4 ) ∪ ( ℤ≥ ‘ 4 ) ) ↔ ( ( 𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3 ) ∨ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ) ) |
26 |
11 17 25
|
3bitri |
⊢ ( 𝑘 ∈ ℕ ↔ ( ( 𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3 ) ∨ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ) ) |
27 |
|
4p2e6 |
⊢ ( 4 + 2 ) = 6 |
28 |
27
|
oveq2i |
⊢ ( 2 ↑ ( 4 + 2 ) ) = ( 2 ↑ 6 ) |
29 |
|
2exp6 |
⊢ ( 2 ↑ 6 ) = ; 6 4 |
30 |
28 29
|
eqtri |
⊢ ( 2 ↑ ( 4 + 2 ) ) = ; 6 4 |
31 |
30
|
oveq2i |
⊢ ( 𝑘 · ( 2 ↑ ( 4 + 2 ) ) ) = ( 𝑘 · ; 6 4 ) |
32 |
31
|
oveq1i |
⊢ ( ( 𝑘 · ( 2 ↑ ( 4 + 2 ) ) ) + 1 ) = ( ( 𝑘 · ; 6 4 ) + 1 ) |
33 |
32
|
eqeq2i |
⊢ ( 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 4 + 2 ) ) ) + 1 ) ↔ 𝑃 = ( ( 𝑘 · ; 6 4 ) + 1 ) ) |
34 |
|
simpl |
⊢ ( ( 𝑃 = ( ( 𝑘 · ; 6 4 ) + 1 ) ∧ 𝑘 = 1 ) → 𝑃 = ( ( 𝑘 · ; 6 4 ) + 1 ) ) |
35 |
|
oveq1 |
⊢ ( 𝑘 = 1 → ( 𝑘 · ; 6 4 ) = ( 1 · ; 6 4 ) ) |
36 |
|
6nn0 |
⊢ 6 ∈ ℕ0 |
37 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
38 |
36 37
|
deccl |
⊢ ; 6 4 ∈ ℕ0 |
39 |
38
|
nn0cni |
⊢ ; 6 4 ∈ ℂ |
40 |
39
|
mulid2i |
⊢ ( 1 · ; 6 4 ) = ; 6 4 |
41 |
35 40
|
eqtrdi |
⊢ ( 𝑘 = 1 → ( 𝑘 · ; 6 4 ) = ; 6 4 ) |
42 |
41
|
oveq1d |
⊢ ( 𝑘 = 1 → ( ( 𝑘 · ; 6 4 ) + 1 ) = ( ; 6 4 + 1 ) ) |
43 |
|
4p1e5 |
⊢ ( 4 + 1 ) = 5 |
44 |
|
eqid |
⊢ ; 6 4 = ; 6 4 |
45 |
36 37 43 44
|
decsuc |
⊢ ( ; 6 4 + 1 ) = ; 6 5 |
46 |
42 45
|
eqtrdi |
⊢ ( 𝑘 = 1 → ( ( 𝑘 · ; 6 4 ) + 1 ) = ; 6 5 ) |
47 |
46
|
adantl |
⊢ ( ( 𝑃 = ( ( 𝑘 · ; 6 4 ) + 1 ) ∧ 𝑘 = 1 ) → ( ( 𝑘 · ; 6 4 ) + 1 ) = ; 6 5 ) |
48 |
34 47
|
eqtrd |
⊢ ( ( 𝑃 = ( ( 𝑘 · ; 6 4 ) + 1 ) ∧ 𝑘 = 1 ) → 𝑃 = ; 6 5 ) |
49 |
48
|
ex |
⊢ ( 𝑃 = ( ( 𝑘 · ; 6 4 ) + 1 ) → ( 𝑘 = 1 → 𝑃 = ; 6 5 ) ) |
50 |
|
simpl |
⊢ ( ( 𝑃 = ( ( 𝑘 · ; 6 4 ) + 1 ) ∧ 𝑘 = 2 ) → 𝑃 = ( ( 𝑘 · ; 6 4 ) + 1 ) ) |
51 |
|
oveq1 |
⊢ ( 𝑘 = 2 → ( 𝑘 · ; 6 4 ) = ( 2 · ; 6 4 ) ) |
52 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
53 |
|
6cn |
⊢ 6 ∈ ℂ |
54 |
|
2cn |
⊢ 2 ∈ ℂ |
55 |
|
6t2e12 |
⊢ ( 6 · 2 ) = ; 1 2 |
56 |
53 54 55
|
mulcomli |
⊢ ( 2 · 6 ) = ; 1 2 |
57 |
56
|
eqcomi |
⊢ ; 1 2 = ( 2 · 6 ) |
58 |
|
4cn |
⊢ 4 ∈ ℂ |
59 |
|
4t2e8 |
⊢ ( 4 · 2 ) = 8 |
60 |
58 54 59
|
mulcomli |
⊢ ( 2 · 4 ) = 8 |
61 |
60
|
eqcomi |
⊢ 8 = ( 2 · 4 ) |
62 |
36 37 52 57 61
|
decmul10add |
⊢ ( 2 · ; 6 4 ) = ( ; ; 1 2 0 + 8 ) |
63 |
51 62
|
eqtrdi |
⊢ ( 𝑘 = 2 → ( 𝑘 · ; 6 4 ) = ( ; ; 1 2 0 + 8 ) ) |
64 |
63
|
oveq1d |
⊢ ( 𝑘 = 2 → ( ( 𝑘 · ; 6 4 ) + 1 ) = ( ( ; ; 1 2 0 + 8 ) + 1 ) ) |
65 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
66 |
65 52
|
deccl |
⊢ ; 1 2 ∈ ℕ0 |
67 |
|
8nn0 |
⊢ 8 ∈ ℕ0 |
68 |
|
8p1e9 |
⊢ ( 8 + 1 ) = 9 |
69 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
70 |
|
eqid |
⊢ ; ; 1 2 0 = ; ; 1 2 0 |
71 |
|
8cn |
⊢ 8 ∈ ℂ |
72 |
71
|
addid2i |
⊢ ( 0 + 8 ) = 8 |
73 |
66 69 67 70 72
|
decaddi |
⊢ ( ; ; 1 2 0 + 8 ) = ; ; 1 2 8 |
74 |
66 67 68 73
|
decsuc |
⊢ ( ( ; ; 1 2 0 + 8 ) + 1 ) = ; ; 1 2 9 |
75 |
64 74
|
eqtrdi |
⊢ ( 𝑘 = 2 → ( ( 𝑘 · ; 6 4 ) + 1 ) = ; ; 1 2 9 ) |
76 |
75
|
adantl |
⊢ ( ( 𝑃 = ( ( 𝑘 · ; 6 4 ) + 1 ) ∧ 𝑘 = 2 ) → ( ( 𝑘 · ; 6 4 ) + 1 ) = ; ; 1 2 9 ) |
77 |
50 76
|
eqtrd |
⊢ ( ( 𝑃 = ( ( 𝑘 · ; 6 4 ) + 1 ) ∧ 𝑘 = 2 ) → 𝑃 = ; ; 1 2 9 ) |
78 |
77
|
ex |
⊢ ( 𝑃 = ( ( 𝑘 · ; 6 4 ) + 1 ) → ( 𝑘 = 2 → 𝑃 = ; ; 1 2 9 ) ) |
79 |
|
simpl |
⊢ ( ( 𝑃 = ( ( 𝑘 · ; 6 4 ) + 1 ) ∧ 𝑘 = 3 ) → 𝑃 = ( ( 𝑘 · ; 6 4 ) + 1 ) ) |
80 |
|
oveq1 |
⊢ ( 𝑘 = 3 → ( 𝑘 · ; 6 4 ) = ( 3 · ; 6 4 ) ) |
81 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
82 |
|
6t3e18 |
⊢ ( 6 · 3 ) = ; 1 8 |
83 |
|
3cn |
⊢ 3 ∈ ℂ |
84 |
53 83
|
mulcomi |
⊢ ( 6 · 3 ) = ( 3 · 6 ) |
85 |
82 84
|
eqtr3i |
⊢ ; 1 8 = ( 3 · 6 ) |
86 |
|
4t3e12 |
⊢ ( 4 · 3 ) = ; 1 2 |
87 |
58 83
|
mulcomi |
⊢ ( 4 · 3 ) = ( 3 · 4 ) |
88 |
86 87
|
eqtr3i |
⊢ ; 1 2 = ( 3 · 4 ) |
89 |
36 37 81 85 88
|
decmul10add |
⊢ ( 3 · ; 6 4 ) = ( ; ; 1 8 0 + ; 1 2 ) |
90 |
80 89
|
eqtrdi |
⊢ ( 𝑘 = 3 → ( 𝑘 · ; 6 4 ) = ( ; ; 1 8 0 + ; 1 2 ) ) |
91 |
90
|
oveq1d |
⊢ ( 𝑘 = 3 → ( ( 𝑘 · ; 6 4 ) + 1 ) = ( ( ; ; 1 8 0 + ; 1 2 ) + 1 ) ) |
92 |
|
9nn0 |
⊢ 9 ∈ ℕ0 |
93 |
65 92
|
deccl |
⊢ ; 1 9 ∈ ℕ0 |
94 |
|
2p1e3 |
⊢ ( 2 + 1 ) = 3 |
95 |
65 67
|
deccl |
⊢ ; 1 8 ∈ ℕ0 |
96 |
|
eqid |
⊢ ; ; 1 8 0 = ; ; 1 8 0 |
97 |
|
eqid |
⊢ ; 1 2 = ; 1 2 |
98 |
|
eqid |
⊢ ; 1 8 = ; 1 8 |
99 |
65 67 68 98
|
decsuc |
⊢ ( ; 1 8 + 1 ) = ; 1 9 |
100 |
54
|
addid2i |
⊢ ( 0 + 2 ) = 2 |
101 |
95 69 65 52 96 97 99 100
|
decadd |
⊢ ( ; ; 1 8 0 + ; 1 2 ) = ; ; 1 9 2 |
102 |
93 52 94 101
|
decsuc |
⊢ ( ( ; ; 1 8 0 + ; 1 2 ) + 1 ) = ; ; 1 9 3 |
103 |
91 102
|
eqtrdi |
⊢ ( 𝑘 = 3 → ( ( 𝑘 · ; 6 4 ) + 1 ) = ; ; 1 9 3 ) |
104 |
103
|
adantl |
⊢ ( ( 𝑃 = ( ( 𝑘 · ; 6 4 ) + 1 ) ∧ 𝑘 = 3 ) → ( ( 𝑘 · ; 6 4 ) + 1 ) = ; ; 1 9 3 ) |
105 |
79 104
|
eqtrd |
⊢ ( ( 𝑃 = ( ( 𝑘 · ; 6 4 ) + 1 ) ∧ 𝑘 = 3 ) → 𝑃 = ; ; 1 9 3 ) |
106 |
105
|
ex |
⊢ ( 𝑃 = ( ( 𝑘 · ; 6 4 ) + 1 ) → ( 𝑘 = 3 → 𝑃 = ; ; 1 9 3 ) ) |
107 |
49 78 106
|
3orim123d |
⊢ ( 𝑃 = ( ( 𝑘 · ; 6 4 ) + 1 ) → ( ( 𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3 ) → ( 𝑃 = ; 6 5 ∨ 𝑃 = ; ; 1 2 9 ∨ 𝑃 = ; ; 1 9 3 ) ) ) |
108 |
107
|
a1i |
⊢ ( 𝑃 ≤ ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) → ( 𝑃 = ( ( 𝑘 · ; 6 4 ) + 1 ) → ( ( 𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3 ) → ( 𝑃 = ; 6 5 ∨ 𝑃 = ; ; 1 2 9 ∨ 𝑃 = ; ; 1 9 3 ) ) ) ) |
109 |
108
|
com13 |
⊢ ( ( 𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3 ) → ( 𝑃 = ( ( 𝑘 · ; 6 4 ) + 1 ) → ( 𝑃 ≤ ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) → ( 𝑃 = ; 6 5 ∨ 𝑃 = ; ; 1 2 9 ∨ 𝑃 = ; ; 1 9 3 ) ) ) ) |
110 |
|
fmtno4sqrt |
⊢ ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) = ; ; 2 5 6 |
111 |
110
|
breq2i |
⊢ ( 𝑃 ≤ ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) ↔ 𝑃 ≤ ; ; 2 5 6 ) |
112 |
|
breq1 |
⊢ ( 𝑃 = ( ( 𝑘 · ; 6 4 ) + 1 ) → ( 𝑃 ≤ ; ; 2 5 6 ↔ ( ( 𝑘 · ; 6 4 ) + 1 ) ≤ ; ; 2 5 6 ) ) |
113 |
112
|
adantl |
⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 4 ) ∧ 𝑃 = ( ( 𝑘 · ; 6 4 ) + 1 ) ) → ( 𝑃 ≤ ; ; 2 5 6 ↔ ( ( 𝑘 · ; 6 4 ) + 1 ) ≤ ; ; 2 5 6 ) ) |
114 |
|
eluz2 |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 4 ) ↔ ( 4 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 4 ≤ 𝑘 ) ) |
115 |
|
6t4e24 |
⊢ ( 6 · 4 ) = ; 2 4 |
116 |
53 58 115
|
mulcomli |
⊢ ( 4 · 6 ) = ; 2 4 |
117 |
52 37 43 116
|
decsuc |
⊢ ( ( 4 · 6 ) + 1 ) = ; 2 5 |
118 |
|
4t4e16 |
⊢ ( 4 · 4 ) = ; 1 6 |
119 |
37 36 37 44 36 65 117 118
|
decmul2c |
⊢ ( 4 · ; 6 4 ) = ; ; 2 5 6 |
120 |
|
zre |
⊢ ( 𝑘 ∈ ℤ → 𝑘 ∈ ℝ ) |
121 |
38
|
nn0rei |
⊢ ; 6 4 ∈ ℝ |
122 |
36 12
|
decnncl |
⊢ ; 6 4 ∈ ℕ |
123 |
122
|
nngt0i |
⊢ 0 < ; 6 4 |
124 |
121 123
|
pm3.2i |
⊢ ( ; 6 4 ∈ ℝ ∧ 0 < ; 6 4 ) |
125 |
124
|
a1i |
⊢ ( 𝑘 ∈ ℤ → ( ; 6 4 ∈ ℝ ∧ 0 < ; 6 4 ) ) |
126 |
|
lemul1 |
⊢ ( ( 4 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ ( ; 6 4 ∈ ℝ ∧ 0 < ; 6 4 ) ) → ( 4 ≤ 𝑘 ↔ ( 4 · ; 6 4 ) ≤ ( 𝑘 · ; 6 4 ) ) ) |
127 |
4 120 125 126
|
mp3an2i |
⊢ ( 𝑘 ∈ ℤ → ( 4 ≤ 𝑘 ↔ ( 4 · ; 6 4 ) ≤ ( 𝑘 · ; 6 4 ) ) ) |
128 |
127
|
biimpa |
⊢ ( ( 𝑘 ∈ ℤ ∧ 4 ≤ 𝑘 ) → ( 4 · ; 6 4 ) ≤ ( 𝑘 · ; 6 4 ) ) |
129 |
119 128
|
eqbrtrrid |
⊢ ( ( 𝑘 ∈ ℤ ∧ 4 ≤ 𝑘 ) → ; ; 2 5 6 ≤ ( 𝑘 · ; 6 4 ) ) |
130 |
|
5nn0 |
⊢ 5 ∈ ℕ0 |
131 |
52 130
|
deccl |
⊢ ; 2 5 ∈ ℕ0 |
132 |
131 36
|
deccl |
⊢ ; ; 2 5 6 ∈ ℕ0 |
133 |
132
|
nn0zi |
⊢ ; ; 2 5 6 ∈ ℤ |
134 |
|
id |
⊢ ( 𝑘 ∈ ℤ → 𝑘 ∈ ℤ ) |
135 |
38
|
nn0zi |
⊢ ; 6 4 ∈ ℤ |
136 |
135
|
a1i |
⊢ ( 𝑘 ∈ ℤ → ; 6 4 ∈ ℤ ) |
137 |
134 136
|
zmulcld |
⊢ ( 𝑘 ∈ ℤ → ( 𝑘 · ; 6 4 ) ∈ ℤ ) |
138 |
137
|
adantr |
⊢ ( ( 𝑘 ∈ ℤ ∧ 4 ≤ 𝑘 ) → ( 𝑘 · ; 6 4 ) ∈ ℤ ) |
139 |
|
zleltp1 |
⊢ ( ( ; ; 2 5 6 ∈ ℤ ∧ ( 𝑘 · ; 6 4 ) ∈ ℤ ) → ( ; ; 2 5 6 ≤ ( 𝑘 · ; 6 4 ) ↔ ; ; 2 5 6 < ( ( 𝑘 · ; 6 4 ) + 1 ) ) ) |
140 |
133 138 139
|
sylancr |
⊢ ( ( 𝑘 ∈ ℤ ∧ 4 ≤ 𝑘 ) → ( ; ; 2 5 6 ≤ ( 𝑘 · ; 6 4 ) ↔ ; ; 2 5 6 < ( ( 𝑘 · ; 6 4 ) + 1 ) ) ) |
141 |
129 140
|
mpbid |
⊢ ( ( 𝑘 ∈ ℤ ∧ 4 ≤ 𝑘 ) → ; ; 2 5 6 < ( ( 𝑘 · ; 6 4 ) + 1 ) ) |
142 |
141
|
3adant1 |
⊢ ( ( 4 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 4 ≤ 𝑘 ) → ; ; 2 5 6 < ( ( 𝑘 · ; 6 4 ) + 1 ) ) |
143 |
114 142
|
sylbi |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 4 ) → ; ; 2 5 6 < ( ( 𝑘 · ; 6 4 ) + 1 ) ) |
144 |
132
|
nn0rei |
⊢ ; ; 2 5 6 ∈ ℝ |
145 |
144
|
a1i |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 4 ) → ; ; 2 5 6 ∈ ℝ ) |
146 |
|
eluzelre |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 4 ) → 𝑘 ∈ ℝ ) |
147 |
121
|
a1i |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 4 ) → ; 6 4 ∈ ℝ ) |
148 |
146 147
|
remulcld |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 4 ) → ( 𝑘 · ; 6 4 ) ∈ ℝ ) |
149 |
|
peano2re |
⊢ ( ( 𝑘 · ; 6 4 ) ∈ ℝ → ( ( 𝑘 · ; 6 4 ) + 1 ) ∈ ℝ ) |
150 |
148 149
|
syl |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 4 ) → ( ( 𝑘 · ; 6 4 ) + 1 ) ∈ ℝ ) |
151 |
145 150
|
ltnled |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 4 ) → ( ; ; 2 5 6 < ( ( 𝑘 · ; 6 4 ) + 1 ) ↔ ¬ ( ( 𝑘 · ; 6 4 ) + 1 ) ≤ ; ; 2 5 6 ) ) |
152 |
143 151
|
mpbid |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 4 ) → ¬ ( ( 𝑘 · ; 6 4 ) + 1 ) ≤ ; ; 2 5 6 ) |
153 |
152
|
pm2.21d |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 4 ) → ( ( ( 𝑘 · ; 6 4 ) + 1 ) ≤ ; ; 2 5 6 → ( 𝑃 = ; 6 5 ∨ 𝑃 = ; ; 1 2 9 ∨ 𝑃 = ; ; 1 9 3 ) ) ) |
154 |
153
|
adantr |
⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 4 ) ∧ 𝑃 = ( ( 𝑘 · ; 6 4 ) + 1 ) ) → ( ( ( 𝑘 · ; 6 4 ) + 1 ) ≤ ; ; 2 5 6 → ( 𝑃 = ; 6 5 ∨ 𝑃 = ; ; 1 2 9 ∨ 𝑃 = ; ; 1 9 3 ) ) ) |
155 |
113 154
|
sylbid |
⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 4 ) ∧ 𝑃 = ( ( 𝑘 · ; 6 4 ) + 1 ) ) → ( 𝑃 ≤ ; ; 2 5 6 → ( 𝑃 = ; 6 5 ∨ 𝑃 = ; ; 1 2 9 ∨ 𝑃 = ; ; 1 9 3 ) ) ) |
156 |
111 155
|
syl5bi |
⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 4 ) ∧ 𝑃 = ( ( 𝑘 · ; 6 4 ) + 1 ) ) → ( 𝑃 ≤ ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) → ( 𝑃 = ; 6 5 ∨ 𝑃 = ; ; 1 2 9 ∨ 𝑃 = ; ; 1 9 3 ) ) ) |
157 |
156
|
ex |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 4 ) → ( 𝑃 = ( ( 𝑘 · ; 6 4 ) + 1 ) → ( 𝑃 ≤ ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) → ( 𝑃 = ; 6 5 ∨ 𝑃 = ; ; 1 2 9 ∨ 𝑃 = ; ; 1 9 3 ) ) ) ) |
158 |
109 157
|
jaoi |
⊢ ( ( ( 𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3 ) ∨ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ) → ( 𝑃 = ( ( 𝑘 · ; 6 4 ) + 1 ) → ( 𝑃 ≤ ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) → ( 𝑃 = ; 6 5 ∨ 𝑃 = ; ; 1 2 9 ∨ 𝑃 = ; ; 1 9 3 ) ) ) ) |
159 |
158
|
adantr |
⊢ ( ( ( ( 𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3 ) ∨ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ) ∧ ( 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( FermatNo ‘ 4 ) ) ) → ( 𝑃 = ( ( 𝑘 · ; 6 4 ) + 1 ) → ( 𝑃 ≤ ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) → ( 𝑃 = ; 6 5 ∨ 𝑃 = ; ; 1 2 9 ∨ 𝑃 = ; ; 1 9 3 ) ) ) ) |
160 |
33 159
|
syl5bi |
⊢ ( ( ( ( 𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3 ) ∨ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ) ∧ ( 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( FermatNo ‘ 4 ) ) ) → ( 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 4 + 2 ) ) ) + 1 ) → ( 𝑃 ≤ ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) → ( 𝑃 = ; 6 5 ∨ 𝑃 = ; ; 1 2 9 ∨ 𝑃 = ; ; 1 9 3 ) ) ) ) |
161 |
160
|
ex |
⊢ ( ( ( 𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3 ) ∨ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ) → ( ( 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( FermatNo ‘ 4 ) ) → ( 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 4 + 2 ) ) ) + 1 ) → ( 𝑃 ≤ ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) → ( 𝑃 = ; 6 5 ∨ 𝑃 = ; ; 1 2 9 ∨ 𝑃 = ; ; 1 9 3 ) ) ) ) ) |
162 |
26 161
|
sylbi |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( FermatNo ‘ 4 ) ) → ( 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 4 + 2 ) ) ) + 1 ) → ( 𝑃 ≤ ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) → ( 𝑃 = ; 6 5 ∨ 𝑃 = ; ; 1 2 9 ∨ 𝑃 = ; ; 1 9 3 ) ) ) ) ) |
163 |
162
|
com12 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( FermatNo ‘ 4 ) ) → ( 𝑘 ∈ ℕ → ( 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 4 + 2 ) ) ) + 1 ) → ( 𝑃 ≤ ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) → ( 𝑃 = ; 6 5 ∨ 𝑃 = ; ; 1 2 9 ∨ 𝑃 = ; ; 1 9 3 ) ) ) ) ) |
164 |
163
|
rexlimdv |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( FermatNo ‘ 4 ) ) → ( ∃ 𝑘 ∈ ℕ 𝑃 = ( ( 𝑘 · ( 2 ↑ ( 4 + 2 ) ) ) + 1 ) → ( 𝑃 ≤ ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) → ( 𝑃 = ; 6 5 ∨ 𝑃 = ; ; 1 2 9 ∨ 𝑃 = ; ; 1 9 3 ) ) ) ) |
165 |
10 164
|
mpd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( FermatNo ‘ 4 ) ) → ( 𝑃 ≤ ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) → ( 𝑃 = ; 6 5 ∨ 𝑃 = ; ; 1 2 9 ∨ 𝑃 = ; ; 1 9 3 ) ) ) |
166 |
165
|
3impia |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( FermatNo ‘ 4 ) ∧ 𝑃 ≤ ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) ) → ( 𝑃 = ; 6 5 ∨ 𝑃 = ; ; 1 2 9 ∨ 𝑃 = ; ; 1 9 3 ) ) |