| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 2 |  | 4z | ⊢ 4  ∈  ℤ | 
						
							| 3 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 4 |  | 4re | ⊢ 4  ∈  ℝ | 
						
							| 5 |  | 2lt4 | ⊢ 2  <  4 | 
						
							| 6 | 3 4 5 | ltleii | ⊢ 2  ≤  4 | 
						
							| 7 |  | eluz2 | ⊢ ( 4  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 2  ∈  ℤ  ∧  4  ∈  ℤ  ∧  2  ≤  4 ) ) | 
						
							| 8 | 1 2 6 7 | mpbir3an | ⊢ 4  ∈  ( ℤ≥ ‘ 2 ) | 
						
							| 9 |  | fmtnoprmfac2 | ⊢ ( ( 4  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ  ∧  𝑃  ∥  ( FermatNo ‘ 4 ) )  →  ∃ 𝑘  ∈  ℕ 𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 4  +  2 ) ) )  +  1 ) ) | 
						
							| 10 | 8 9 | mp3an1 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑃  ∥  ( FermatNo ‘ 4 ) )  →  ∃ 𝑘  ∈  ℕ 𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 4  +  2 ) ) )  +  1 ) ) | 
						
							| 11 |  | elnnuz | ⊢ ( 𝑘  ∈  ℕ  ↔  𝑘  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 12 |  | 4nn | ⊢ 4  ∈  ℕ | 
						
							| 13 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 14 | 12 13 | eleqtri | ⊢ 4  ∈  ( ℤ≥ ‘ 1 ) | 
						
							| 15 |  | fzouzsplit | ⊢ ( 4  ∈  ( ℤ≥ ‘ 1 )  →  ( ℤ≥ ‘ 1 )  =  ( ( 1 ..^ 4 )  ∪  ( ℤ≥ ‘ 4 ) ) ) | 
						
							| 16 | 14 15 | ax-mp | ⊢ ( ℤ≥ ‘ 1 )  =  ( ( 1 ..^ 4 )  ∪  ( ℤ≥ ‘ 4 ) ) | 
						
							| 17 | 16 | eleq2i | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 1 )  ↔  𝑘  ∈  ( ( 1 ..^ 4 )  ∪  ( ℤ≥ ‘ 4 ) ) ) | 
						
							| 18 |  | elun | ⊢ ( 𝑘  ∈  ( ( 1 ..^ 4 )  ∪  ( ℤ≥ ‘ 4 ) )  ↔  ( 𝑘  ∈  ( 1 ..^ 4 )  ∨  𝑘  ∈  ( ℤ≥ ‘ 4 ) ) ) | 
						
							| 19 |  | fzo1to4tp | ⊢ ( 1 ..^ 4 )  =  { 1 ,  2 ,  3 } | 
						
							| 20 | 19 | eleq2i | ⊢ ( 𝑘  ∈  ( 1 ..^ 4 )  ↔  𝑘  ∈  { 1 ,  2 ,  3 } ) | 
						
							| 21 |  | vex | ⊢ 𝑘  ∈  V | 
						
							| 22 | 21 | eltp | ⊢ ( 𝑘  ∈  { 1 ,  2 ,  3 }  ↔  ( 𝑘  =  1  ∨  𝑘  =  2  ∨  𝑘  =  3 ) ) | 
						
							| 23 | 20 22 | bitri | ⊢ ( 𝑘  ∈  ( 1 ..^ 4 )  ↔  ( 𝑘  =  1  ∨  𝑘  =  2  ∨  𝑘  =  3 ) ) | 
						
							| 24 | 23 | orbi1i | ⊢ ( ( 𝑘  ∈  ( 1 ..^ 4 )  ∨  𝑘  ∈  ( ℤ≥ ‘ 4 ) )  ↔  ( ( 𝑘  =  1  ∨  𝑘  =  2  ∨  𝑘  =  3 )  ∨  𝑘  ∈  ( ℤ≥ ‘ 4 ) ) ) | 
						
							| 25 | 18 24 | bitri | ⊢ ( 𝑘  ∈  ( ( 1 ..^ 4 )  ∪  ( ℤ≥ ‘ 4 ) )  ↔  ( ( 𝑘  =  1  ∨  𝑘  =  2  ∨  𝑘  =  3 )  ∨  𝑘  ∈  ( ℤ≥ ‘ 4 ) ) ) | 
						
							| 26 | 11 17 25 | 3bitri | ⊢ ( 𝑘  ∈  ℕ  ↔  ( ( 𝑘  =  1  ∨  𝑘  =  2  ∨  𝑘  =  3 )  ∨  𝑘  ∈  ( ℤ≥ ‘ 4 ) ) ) | 
						
							| 27 |  | 4p2e6 | ⊢ ( 4  +  2 )  =  6 | 
						
							| 28 | 27 | oveq2i | ⊢ ( 2 ↑ ( 4  +  2 ) )  =  ( 2 ↑ 6 ) | 
						
							| 29 |  | 2exp6 | ⊢ ( 2 ↑ 6 )  =  ; 6 4 | 
						
							| 30 | 28 29 | eqtri | ⊢ ( 2 ↑ ( 4  +  2 ) )  =  ; 6 4 | 
						
							| 31 | 30 | oveq2i | ⊢ ( 𝑘  ·  ( 2 ↑ ( 4  +  2 ) ) )  =  ( 𝑘  ·  ; 6 4 ) | 
						
							| 32 | 31 | oveq1i | ⊢ ( ( 𝑘  ·  ( 2 ↑ ( 4  +  2 ) ) )  +  1 )  =  ( ( 𝑘  ·  ; 6 4 )  +  1 ) | 
						
							| 33 | 32 | eqeq2i | ⊢ ( 𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 4  +  2 ) ) )  +  1 )  ↔  𝑃  =  ( ( 𝑘  ·  ; 6 4 )  +  1 ) ) | 
						
							| 34 |  | simpl | ⊢ ( ( 𝑃  =  ( ( 𝑘  ·  ; 6 4 )  +  1 )  ∧  𝑘  =  1 )  →  𝑃  =  ( ( 𝑘  ·  ; 6 4 )  +  1 ) ) | 
						
							| 35 |  | oveq1 | ⊢ ( 𝑘  =  1  →  ( 𝑘  ·  ; 6 4 )  =  ( 1  ·  ; 6 4 ) ) | 
						
							| 36 |  | 6nn0 | ⊢ 6  ∈  ℕ0 | 
						
							| 37 |  | 4nn0 | ⊢ 4  ∈  ℕ0 | 
						
							| 38 | 36 37 | deccl | ⊢ ; 6 4  ∈  ℕ0 | 
						
							| 39 | 38 | nn0cni | ⊢ ; 6 4  ∈  ℂ | 
						
							| 40 | 39 | mullidi | ⊢ ( 1  ·  ; 6 4 )  =  ; 6 4 | 
						
							| 41 | 35 40 | eqtrdi | ⊢ ( 𝑘  =  1  →  ( 𝑘  ·  ; 6 4 )  =  ; 6 4 ) | 
						
							| 42 | 41 | oveq1d | ⊢ ( 𝑘  =  1  →  ( ( 𝑘  ·  ; 6 4 )  +  1 )  =  ( ; 6 4  +  1 ) ) | 
						
							| 43 |  | 4p1e5 | ⊢ ( 4  +  1 )  =  5 | 
						
							| 44 |  | eqid | ⊢ ; 6 4  =  ; 6 4 | 
						
							| 45 | 36 37 43 44 | decsuc | ⊢ ( ; 6 4  +  1 )  =  ; 6 5 | 
						
							| 46 | 42 45 | eqtrdi | ⊢ ( 𝑘  =  1  →  ( ( 𝑘  ·  ; 6 4 )  +  1 )  =  ; 6 5 ) | 
						
							| 47 | 46 | adantl | ⊢ ( ( 𝑃  =  ( ( 𝑘  ·  ; 6 4 )  +  1 )  ∧  𝑘  =  1 )  →  ( ( 𝑘  ·  ; 6 4 )  +  1 )  =  ; 6 5 ) | 
						
							| 48 | 34 47 | eqtrd | ⊢ ( ( 𝑃  =  ( ( 𝑘  ·  ; 6 4 )  +  1 )  ∧  𝑘  =  1 )  →  𝑃  =  ; 6 5 ) | 
						
							| 49 | 48 | ex | ⊢ ( 𝑃  =  ( ( 𝑘  ·  ; 6 4 )  +  1 )  →  ( 𝑘  =  1  →  𝑃  =  ; 6 5 ) ) | 
						
							| 50 |  | simpl | ⊢ ( ( 𝑃  =  ( ( 𝑘  ·  ; 6 4 )  +  1 )  ∧  𝑘  =  2 )  →  𝑃  =  ( ( 𝑘  ·  ; 6 4 )  +  1 ) ) | 
						
							| 51 |  | oveq1 | ⊢ ( 𝑘  =  2  →  ( 𝑘  ·  ; 6 4 )  =  ( 2  ·  ; 6 4 ) ) | 
						
							| 52 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 53 |  | 6cn | ⊢ 6  ∈  ℂ | 
						
							| 54 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 55 |  | 6t2e12 | ⊢ ( 6  ·  2 )  =  ; 1 2 | 
						
							| 56 | 53 54 55 | mulcomli | ⊢ ( 2  ·  6 )  =  ; 1 2 | 
						
							| 57 | 56 | eqcomi | ⊢ ; 1 2  =  ( 2  ·  6 ) | 
						
							| 58 |  | 4cn | ⊢ 4  ∈  ℂ | 
						
							| 59 |  | 4t2e8 | ⊢ ( 4  ·  2 )  =  8 | 
						
							| 60 | 58 54 59 | mulcomli | ⊢ ( 2  ·  4 )  =  8 | 
						
							| 61 | 60 | eqcomi | ⊢ 8  =  ( 2  ·  4 ) | 
						
							| 62 | 36 37 52 57 61 | decmul10add | ⊢ ( 2  ·  ; 6 4 )  =  ( ; ; 1 2 0  +  8 ) | 
						
							| 63 | 51 62 | eqtrdi | ⊢ ( 𝑘  =  2  →  ( 𝑘  ·  ; 6 4 )  =  ( ; ; 1 2 0  +  8 ) ) | 
						
							| 64 | 63 | oveq1d | ⊢ ( 𝑘  =  2  →  ( ( 𝑘  ·  ; 6 4 )  +  1 )  =  ( ( ; ; 1 2 0  +  8 )  +  1 ) ) | 
						
							| 65 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 66 | 65 52 | deccl | ⊢ ; 1 2  ∈  ℕ0 | 
						
							| 67 |  | 8nn0 | ⊢ 8  ∈  ℕ0 | 
						
							| 68 |  | 8p1e9 | ⊢ ( 8  +  1 )  =  9 | 
						
							| 69 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 70 |  | eqid | ⊢ ; ; 1 2 0  =  ; ; 1 2 0 | 
						
							| 71 |  | 8cn | ⊢ 8  ∈  ℂ | 
						
							| 72 | 71 | addlidi | ⊢ ( 0  +  8 )  =  8 | 
						
							| 73 | 66 69 67 70 72 | decaddi | ⊢ ( ; ; 1 2 0  +  8 )  =  ; ; 1 2 8 | 
						
							| 74 | 66 67 68 73 | decsuc | ⊢ ( ( ; ; 1 2 0  +  8 )  +  1 )  =  ; ; 1 2 9 | 
						
							| 75 | 64 74 | eqtrdi | ⊢ ( 𝑘  =  2  →  ( ( 𝑘  ·  ; 6 4 )  +  1 )  =  ; ; 1 2 9 ) | 
						
							| 76 | 75 | adantl | ⊢ ( ( 𝑃  =  ( ( 𝑘  ·  ; 6 4 )  +  1 )  ∧  𝑘  =  2 )  →  ( ( 𝑘  ·  ; 6 4 )  +  1 )  =  ; ; 1 2 9 ) | 
						
							| 77 | 50 76 | eqtrd | ⊢ ( ( 𝑃  =  ( ( 𝑘  ·  ; 6 4 )  +  1 )  ∧  𝑘  =  2 )  →  𝑃  =  ; ; 1 2 9 ) | 
						
							| 78 | 77 | ex | ⊢ ( 𝑃  =  ( ( 𝑘  ·  ; 6 4 )  +  1 )  →  ( 𝑘  =  2  →  𝑃  =  ; ; 1 2 9 ) ) | 
						
							| 79 |  | simpl | ⊢ ( ( 𝑃  =  ( ( 𝑘  ·  ; 6 4 )  +  1 )  ∧  𝑘  =  3 )  →  𝑃  =  ( ( 𝑘  ·  ; 6 4 )  +  1 ) ) | 
						
							| 80 |  | oveq1 | ⊢ ( 𝑘  =  3  →  ( 𝑘  ·  ; 6 4 )  =  ( 3  ·  ; 6 4 ) ) | 
						
							| 81 |  | 3nn0 | ⊢ 3  ∈  ℕ0 | 
						
							| 82 |  | 6t3e18 | ⊢ ( 6  ·  3 )  =  ; 1 8 | 
						
							| 83 |  | 3cn | ⊢ 3  ∈  ℂ | 
						
							| 84 | 53 83 | mulcomi | ⊢ ( 6  ·  3 )  =  ( 3  ·  6 ) | 
						
							| 85 | 82 84 | eqtr3i | ⊢ ; 1 8  =  ( 3  ·  6 ) | 
						
							| 86 |  | 4t3e12 | ⊢ ( 4  ·  3 )  =  ; 1 2 | 
						
							| 87 | 58 83 | mulcomi | ⊢ ( 4  ·  3 )  =  ( 3  ·  4 ) | 
						
							| 88 | 86 87 | eqtr3i | ⊢ ; 1 2  =  ( 3  ·  4 ) | 
						
							| 89 | 36 37 81 85 88 | decmul10add | ⊢ ( 3  ·  ; 6 4 )  =  ( ; ; 1 8 0  +  ; 1 2 ) | 
						
							| 90 | 80 89 | eqtrdi | ⊢ ( 𝑘  =  3  →  ( 𝑘  ·  ; 6 4 )  =  ( ; ; 1 8 0  +  ; 1 2 ) ) | 
						
							| 91 | 90 | oveq1d | ⊢ ( 𝑘  =  3  →  ( ( 𝑘  ·  ; 6 4 )  +  1 )  =  ( ( ; ; 1 8 0  +  ; 1 2 )  +  1 ) ) | 
						
							| 92 |  | 9nn0 | ⊢ 9  ∈  ℕ0 | 
						
							| 93 | 65 92 | deccl | ⊢ ; 1 9  ∈  ℕ0 | 
						
							| 94 |  | 2p1e3 | ⊢ ( 2  +  1 )  =  3 | 
						
							| 95 | 65 67 | deccl | ⊢ ; 1 8  ∈  ℕ0 | 
						
							| 96 |  | eqid | ⊢ ; ; 1 8 0  =  ; ; 1 8 0 | 
						
							| 97 |  | eqid | ⊢ ; 1 2  =  ; 1 2 | 
						
							| 98 |  | eqid | ⊢ ; 1 8  =  ; 1 8 | 
						
							| 99 | 65 67 68 98 | decsuc | ⊢ ( ; 1 8  +  1 )  =  ; 1 9 | 
						
							| 100 | 54 | addlidi | ⊢ ( 0  +  2 )  =  2 | 
						
							| 101 | 95 69 65 52 96 97 99 100 | decadd | ⊢ ( ; ; 1 8 0  +  ; 1 2 )  =  ; ; 1 9 2 | 
						
							| 102 | 93 52 94 101 | decsuc | ⊢ ( ( ; ; 1 8 0  +  ; 1 2 )  +  1 )  =  ; ; 1 9 3 | 
						
							| 103 | 91 102 | eqtrdi | ⊢ ( 𝑘  =  3  →  ( ( 𝑘  ·  ; 6 4 )  +  1 )  =  ; ; 1 9 3 ) | 
						
							| 104 | 103 | adantl | ⊢ ( ( 𝑃  =  ( ( 𝑘  ·  ; 6 4 )  +  1 )  ∧  𝑘  =  3 )  →  ( ( 𝑘  ·  ; 6 4 )  +  1 )  =  ; ; 1 9 3 ) | 
						
							| 105 | 79 104 | eqtrd | ⊢ ( ( 𝑃  =  ( ( 𝑘  ·  ; 6 4 )  +  1 )  ∧  𝑘  =  3 )  →  𝑃  =  ; ; 1 9 3 ) | 
						
							| 106 | 105 | ex | ⊢ ( 𝑃  =  ( ( 𝑘  ·  ; 6 4 )  +  1 )  →  ( 𝑘  =  3  →  𝑃  =  ; ; 1 9 3 ) ) | 
						
							| 107 | 49 78 106 | 3orim123d | ⊢ ( 𝑃  =  ( ( 𝑘  ·  ; 6 4 )  +  1 )  →  ( ( 𝑘  =  1  ∨  𝑘  =  2  ∨  𝑘  =  3 )  →  ( 𝑃  =  ; 6 5  ∨  𝑃  =  ; ; 1 2 9  ∨  𝑃  =  ; ; 1 9 3 ) ) ) | 
						
							| 108 | 107 | a1i | ⊢ ( 𝑃  ≤  ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) )  →  ( 𝑃  =  ( ( 𝑘  ·  ; 6 4 )  +  1 )  →  ( ( 𝑘  =  1  ∨  𝑘  =  2  ∨  𝑘  =  3 )  →  ( 𝑃  =  ; 6 5  ∨  𝑃  =  ; ; 1 2 9  ∨  𝑃  =  ; ; 1 9 3 ) ) ) ) | 
						
							| 109 | 108 | com13 | ⊢ ( ( 𝑘  =  1  ∨  𝑘  =  2  ∨  𝑘  =  3 )  →  ( 𝑃  =  ( ( 𝑘  ·  ; 6 4 )  +  1 )  →  ( 𝑃  ≤  ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) )  →  ( 𝑃  =  ; 6 5  ∨  𝑃  =  ; ; 1 2 9  ∨  𝑃  =  ; ; 1 9 3 ) ) ) ) | 
						
							| 110 |  | fmtno4sqrt | ⊢ ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) )  =  ; ; 2 5 6 | 
						
							| 111 | 110 | breq2i | ⊢ ( 𝑃  ≤  ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) )  ↔  𝑃  ≤  ; ; 2 5 6 ) | 
						
							| 112 |  | breq1 | ⊢ ( 𝑃  =  ( ( 𝑘  ·  ; 6 4 )  +  1 )  →  ( 𝑃  ≤  ; ; 2 5 6  ↔  ( ( 𝑘  ·  ; 6 4 )  +  1 )  ≤  ; ; 2 5 6 ) ) | 
						
							| 113 | 112 | adantl | ⊢ ( ( 𝑘  ∈  ( ℤ≥ ‘ 4 )  ∧  𝑃  =  ( ( 𝑘  ·  ; 6 4 )  +  1 ) )  →  ( 𝑃  ≤  ; ; 2 5 6  ↔  ( ( 𝑘  ·  ; 6 4 )  +  1 )  ≤  ; ; 2 5 6 ) ) | 
						
							| 114 |  | eluz2 | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 4 )  ↔  ( 4  ∈  ℤ  ∧  𝑘  ∈  ℤ  ∧  4  ≤  𝑘 ) ) | 
						
							| 115 |  | 6t4e24 | ⊢ ( 6  ·  4 )  =  ; 2 4 | 
						
							| 116 | 53 58 115 | mulcomli | ⊢ ( 4  ·  6 )  =  ; 2 4 | 
						
							| 117 | 52 37 43 116 | decsuc | ⊢ ( ( 4  ·  6 )  +  1 )  =  ; 2 5 | 
						
							| 118 |  | 4t4e16 | ⊢ ( 4  ·  4 )  =  ; 1 6 | 
						
							| 119 | 37 36 37 44 36 65 117 118 | decmul2c | ⊢ ( 4  ·  ; 6 4 )  =  ; ; 2 5 6 | 
						
							| 120 |  | zre | ⊢ ( 𝑘  ∈  ℤ  →  𝑘  ∈  ℝ ) | 
						
							| 121 | 38 | nn0rei | ⊢ ; 6 4  ∈  ℝ | 
						
							| 122 | 36 12 | decnncl | ⊢ ; 6 4  ∈  ℕ | 
						
							| 123 | 122 | nngt0i | ⊢ 0  <  ; 6 4 | 
						
							| 124 | 121 123 | pm3.2i | ⊢ ( ; 6 4  ∈  ℝ  ∧  0  <  ; 6 4 ) | 
						
							| 125 | 124 | a1i | ⊢ ( 𝑘  ∈  ℤ  →  ( ; 6 4  ∈  ℝ  ∧  0  <  ; 6 4 ) ) | 
						
							| 126 |  | lemul1 | ⊢ ( ( 4  ∈  ℝ  ∧  𝑘  ∈  ℝ  ∧  ( ; 6 4  ∈  ℝ  ∧  0  <  ; 6 4 ) )  →  ( 4  ≤  𝑘  ↔  ( 4  ·  ; 6 4 )  ≤  ( 𝑘  ·  ; 6 4 ) ) ) | 
						
							| 127 | 4 120 125 126 | mp3an2i | ⊢ ( 𝑘  ∈  ℤ  →  ( 4  ≤  𝑘  ↔  ( 4  ·  ; 6 4 )  ≤  ( 𝑘  ·  ; 6 4 ) ) ) | 
						
							| 128 | 127 | biimpa | ⊢ ( ( 𝑘  ∈  ℤ  ∧  4  ≤  𝑘 )  →  ( 4  ·  ; 6 4 )  ≤  ( 𝑘  ·  ; 6 4 ) ) | 
						
							| 129 | 119 128 | eqbrtrrid | ⊢ ( ( 𝑘  ∈  ℤ  ∧  4  ≤  𝑘 )  →  ; ; 2 5 6  ≤  ( 𝑘  ·  ; 6 4 ) ) | 
						
							| 130 |  | 5nn0 | ⊢ 5  ∈  ℕ0 | 
						
							| 131 | 52 130 | deccl | ⊢ ; 2 5  ∈  ℕ0 | 
						
							| 132 | 131 36 | deccl | ⊢ ; ; 2 5 6  ∈  ℕ0 | 
						
							| 133 | 132 | nn0zi | ⊢ ; ; 2 5 6  ∈  ℤ | 
						
							| 134 |  | id | ⊢ ( 𝑘  ∈  ℤ  →  𝑘  ∈  ℤ ) | 
						
							| 135 | 38 | nn0zi | ⊢ ; 6 4  ∈  ℤ | 
						
							| 136 | 135 | a1i | ⊢ ( 𝑘  ∈  ℤ  →  ; 6 4  ∈  ℤ ) | 
						
							| 137 | 134 136 | zmulcld | ⊢ ( 𝑘  ∈  ℤ  →  ( 𝑘  ·  ; 6 4 )  ∈  ℤ ) | 
						
							| 138 | 137 | adantr | ⊢ ( ( 𝑘  ∈  ℤ  ∧  4  ≤  𝑘 )  →  ( 𝑘  ·  ; 6 4 )  ∈  ℤ ) | 
						
							| 139 |  | zleltp1 | ⊢ ( ( ; ; 2 5 6  ∈  ℤ  ∧  ( 𝑘  ·  ; 6 4 )  ∈  ℤ )  →  ( ; ; 2 5 6  ≤  ( 𝑘  ·  ; 6 4 )  ↔  ; ; 2 5 6  <  ( ( 𝑘  ·  ; 6 4 )  +  1 ) ) ) | 
						
							| 140 | 133 138 139 | sylancr | ⊢ ( ( 𝑘  ∈  ℤ  ∧  4  ≤  𝑘 )  →  ( ; ; 2 5 6  ≤  ( 𝑘  ·  ; 6 4 )  ↔  ; ; 2 5 6  <  ( ( 𝑘  ·  ; 6 4 )  +  1 ) ) ) | 
						
							| 141 | 129 140 | mpbid | ⊢ ( ( 𝑘  ∈  ℤ  ∧  4  ≤  𝑘 )  →  ; ; 2 5 6  <  ( ( 𝑘  ·  ; 6 4 )  +  1 ) ) | 
						
							| 142 | 141 | 3adant1 | ⊢ ( ( 4  ∈  ℤ  ∧  𝑘  ∈  ℤ  ∧  4  ≤  𝑘 )  →  ; ; 2 5 6  <  ( ( 𝑘  ·  ; 6 4 )  +  1 ) ) | 
						
							| 143 | 114 142 | sylbi | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 4 )  →  ; ; 2 5 6  <  ( ( 𝑘  ·  ; 6 4 )  +  1 ) ) | 
						
							| 144 | 132 | nn0rei | ⊢ ; ; 2 5 6  ∈  ℝ | 
						
							| 145 | 144 | a1i | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 4 )  →  ; ; 2 5 6  ∈  ℝ ) | 
						
							| 146 |  | eluzelre | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 4 )  →  𝑘  ∈  ℝ ) | 
						
							| 147 | 121 | a1i | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 4 )  →  ; 6 4  ∈  ℝ ) | 
						
							| 148 | 146 147 | remulcld | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 4 )  →  ( 𝑘  ·  ; 6 4 )  ∈  ℝ ) | 
						
							| 149 |  | peano2re | ⊢ ( ( 𝑘  ·  ; 6 4 )  ∈  ℝ  →  ( ( 𝑘  ·  ; 6 4 )  +  1 )  ∈  ℝ ) | 
						
							| 150 | 148 149 | syl | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 4 )  →  ( ( 𝑘  ·  ; 6 4 )  +  1 )  ∈  ℝ ) | 
						
							| 151 | 145 150 | ltnled | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 4 )  →  ( ; ; 2 5 6  <  ( ( 𝑘  ·  ; 6 4 )  +  1 )  ↔  ¬  ( ( 𝑘  ·  ; 6 4 )  +  1 )  ≤  ; ; 2 5 6 ) ) | 
						
							| 152 | 143 151 | mpbid | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 4 )  →  ¬  ( ( 𝑘  ·  ; 6 4 )  +  1 )  ≤  ; ; 2 5 6 ) | 
						
							| 153 | 152 | pm2.21d | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 4 )  →  ( ( ( 𝑘  ·  ; 6 4 )  +  1 )  ≤  ; ; 2 5 6  →  ( 𝑃  =  ; 6 5  ∨  𝑃  =  ; ; 1 2 9  ∨  𝑃  =  ; ; 1 9 3 ) ) ) | 
						
							| 154 | 153 | adantr | ⊢ ( ( 𝑘  ∈  ( ℤ≥ ‘ 4 )  ∧  𝑃  =  ( ( 𝑘  ·  ; 6 4 )  +  1 ) )  →  ( ( ( 𝑘  ·  ; 6 4 )  +  1 )  ≤  ; ; 2 5 6  →  ( 𝑃  =  ; 6 5  ∨  𝑃  =  ; ; 1 2 9  ∨  𝑃  =  ; ; 1 9 3 ) ) ) | 
						
							| 155 | 113 154 | sylbid | ⊢ ( ( 𝑘  ∈  ( ℤ≥ ‘ 4 )  ∧  𝑃  =  ( ( 𝑘  ·  ; 6 4 )  +  1 ) )  →  ( 𝑃  ≤  ; ; 2 5 6  →  ( 𝑃  =  ; 6 5  ∨  𝑃  =  ; ; 1 2 9  ∨  𝑃  =  ; ; 1 9 3 ) ) ) | 
						
							| 156 | 111 155 | biimtrid | ⊢ ( ( 𝑘  ∈  ( ℤ≥ ‘ 4 )  ∧  𝑃  =  ( ( 𝑘  ·  ; 6 4 )  +  1 ) )  →  ( 𝑃  ≤  ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) )  →  ( 𝑃  =  ; 6 5  ∨  𝑃  =  ; ; 1 2 9  ∨  𝑃  =  ; ; 1 9 3 ) ) ) | 
						
							| 157 | 156 | ex | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 4 )  →  ( 𝑃  =  ( ( 𝑘  ·  ; 6 4 )  +  1 )  →  ( 𝑃  ≤  ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) )  →  ( 𝑃  =  ; 6 5  ∨  𝑃  =  ; ; 1 2 9  ∨  𝑃  =  ; ; 1 9 3 ) ) ) ) | 
						
							| 158 | 109 157 | jaoi | ⊢ ( ( ( 𝑘  =  1  ∨  𝑘  =  2  ∨  𝑘  =  3 )  ∨  𝑘  ∈  ( ℤ≥ ‘ 4 ) )  →  ( 𝑃  =  ( ( 𝑘  ·  ; 6 4 )  +  1 )  →  ( 𝑃  ≤  ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) )  →  ( 𝑃  =  ; 6 5  ∨  𝑃  =  ; ; 1 2 9  ∨  𝑃  =  ; ; 1 9 3 ) ) ) ) | 
						
							| 159 | 158 | adantr | ⊢ ( ( ( ( 𝑘  =  1  ∨  𝑘  =  2  ∨  𝑘  =  3 )  ∨  𝑘  ∈  ( ℤ≥ ‘ 4 ) )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑃  ∥  ( FermatNo ‘ 4 ) ) )  →  ( 𝑃  =  ( ( 𝑘  ·  ; 6 4 )  +  1 )  →  ( 𝑃  ≤  ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) )  →  ( 𝑃  =  ; 6 5  ∨  𝑃  =  ; ; 1 2 9  ∨  𝑃  =  ; ; 1 9 3 ) ) ) ) | 
						
							| 160 | 33 159 | biimtrid | ⊢ ( ( ( ( 𝑘  =  1  ∨  𝑘  =  2  ∨  𝑘  =  3 )  ∨  𝑘  ∈  ( ℤ≥ ‘ 4 ) )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑃  ∥  ( FermatNo ‘ 4 ) ) )  →  ( 𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 4  +  2 ) ) )  +  1 )  →  ( 𝑃  ≤  ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) )  →  ( 𝑃  =  ; 6 5  ∨  𝑃  =  ; ; 1 2 9  ∨  𝑃  =  ; ; 1 9 3 ) ) ) ) | 
						
							| 161 | 160 | ex | ⊢ ( ( ( 𝑘  =  1  ∨  𝑘  =  2  ∨  𝑘  =  3 )  ∨  𝑘  ∈  ( ℤ≥ ‘ 4 ) )  →  ( ( 𝑃  ∈  ℙ  ∧  𝑃  ∥  ( FermatNo ‘ 4 ) )  →  ( 𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 4  +  2 ) ) )  +  1 )  →  ( 𝑃  ≤  ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) )  →  ( 𝑃  =  ; 6 5  ∨  𝑃  =  ; ; 1 2 9  ∨  𝑃  =  ; ; 1 9 3 ) ) ) ) ) | 
						
							| 162 | 26 161 | sylbi | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝑃  ∈  ℙ  ∧  𝑃  ∥  ( FermatNo ‘ 4 ) )  →  ( 𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 4  +  2 ) ) )  +  1 )  →  ( 𝑃  ≤  ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) )  →  ( 𝑃  =  ; 6 5  ∨  𝑃  =  ; ; 1 2 9  ∨  𝑃  =  ; ; 1 9 3 ) ) ) ) ) | 
						
							| 163 | 162 | com12 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑃  ∥  ( FermatNo ‘ 4 ) )  →  ( 𝑘  ∈  ℕ  →  ( 𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 4  +  2 ) ) )  +  1 )  →  ( 𝑃  ≤  ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) )  →  ( 𝑃  =  ; 6 5  ∨  𝑃  =  ; ; 1 2 9  ∨  𝑃  =  ; ; 1 9 3 ) ) ) ) ) | 
						
							| 164 | 163 | rexlimdv | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑃  ∥  ( FermatNo ‘ 4 ) )  →  ( ∃ 𝑘  ∈  ℕ 𝑃  =  ( ( 𝑘  ·  ( 2 ↑ ( 4  +  2 ) ) )  +  1 )  →  ( 𝑃  ≤  ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) )  →  ( 𝑃  =  ; 6 5  ∨  𝑃  =  ; ; 1 2 9  ∨  𝑃  =  ; ; 1 9 3 ) ) ) ) | 
						
							| 165 | 10 164 | mpd | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑃  ∥  ( FermatNo ‘ 4 ) )  →  ( 𝑃  ≤  ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) )  →  ( 𝑃  =  ; 6 5  ∨  𝑃  =  ; ; 1 2 9  ∨  𝑃  =  ; ; 1 9 3 ) ) ) | 
						
							| 166 | 165 | 3impia | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑃  ∥  ( FermatNo ‘ 4 )  ∧  𝑃  ≤  ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) )  →  ( 𝑃  =  ; 6 5  ∨  𝑃  =  ; ; 1 2 9  ∨  𝑃  =  ; ; 1 9 3 ) ) |