| Step |
Hyp |
Ref |
Expression |
| 1 |
|
4z |
⊢ 4 ∈ ℤ |
| 2 |
|
fzoval |
⊢ ( 4 ∈ ℤ → ( 1 ..^ 4 ) = ( 1 ... ( 4 − 1 ) ) ) |
| 3 |
1 2
|
ax-mp |
⊢ ( 1 ..^ 4 ) = ( 1 ... ( 4 − 1 ) ) |
| 4 |
|
4m1e3 |
⊢ ( 4 − 1 ) = 3 |
| 5 |
|
df-3 |
⊢ 3 = ( 2 + 1 ) |
| 6 |
|
2cn |
⊢ 2 ∈ ℂ |
| 7 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 8 |
6 7
|
addcomi |
⊢ ( 2 + 1 ) = ( 1 + 2 ) |
| 9 |
4 5 8
|
3eqtri |
⊢ ( 4 − 1 ) = ( 1 + 2 ) |
| 10 |
9
|
oveq2i |
⊢ ( 1 ... ( 4 − 1 ) ) = ( 1 ... ( 1 + 2 ) ) |
| 11 |
|
1z |
⊢ 1 ∈ ℤ |
| 12 |
|
fztp |
⊢ ( 1 ∈ ℤ → ( 1 ... ( 1 + 2 ) ) = { 1 , ( 1 + 1 ) , ( 1 + 2 ) } ) |
| 13 |
|
eqidd |
⊢ ( 1 ∈ ℤ → 1 = 1 ) |
| 14 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
| 15 |
14
|
a1i |
⊢ ( 1 ∈ ℤ → ( 1 + 1 ) = 2 ) |
| 16 |
|
1p2e3 |
⊢ ( 1 + 2 ) = 3 |
| 17 |
16
|
a1i |
⊢ ( 1 ∈ ℤ → ( 1 + 2 ) = 3 ) |
| 18 |
13 15 17
|
tpeq123d |
⊢ ( 1 ∈ ℤ → { 1 , ( 1 + 1 ) , ( 1 + 2 ) } = { 1 , 2 , 3 } ) |
| 19 |
12 18
|
eqtrd |
⊢ ( 1 ∈ ℤ → ( 1 ... ( 1 + 2 ) ) = { 1 , 2 , 3 } ) |
| 20 |
11 19
|
ax-mp |
⊢ ( 1 ... ( 1 + 2 ) ) = { 1 , 2 , 3 } |
| 21 |
3 10 20
|
3eqtri |
⊢ ( 1 ..^ 4 ) = { 1 , 2 , 3 } |