Step |
Hyp |
Ref |
Expression |
1 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
2 |
|
fmtno |
⊢ ( 4 ∈ ℕ0 → ( FermatNo ‘ 4 ) = ( ( 2 ↑ ( 2 ↑ 4 ) ) + 1 ) ) |
3 |
1 2
|
ax-mp |
⊢ ( FermatNo ‘ 4 ) = ( ( 2 ↑ ( 2 ↑ 4 ) ) + 1 ) |
4 |
|
2nn |
⊢ 2 ∈ ℕ |
5 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
6 |
5 1
|
nn0expcli |
⊢ ( 2 ↑ 4 ) ∈ ℕ0 |
7 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ ( 2 ↑ 4 ) ∈ ℕ0 ) → ( 2 ↑ ( 2 ↑ 4 ) ) ∈ ℕ ) |
8 |
4 6 7
|
mp2an |
⊢ ( 2 ↑ ( 2 ↑ 4 ) ) ∈ ℕ |
9 |
|
2re |
⊢ 2 ∈ ℝ |
10 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 4 ∈ ℕ0 ) → ( 2 ↑ 4 ) ∈ ℕ ) |
11 |
4 1 10
|
mp2an |
⊢ ( 2 ↑ 4 ) ∈ ℕ |
12 |
|
1lt2 |
⊢ 1 < 2 |
13 |
|
expgt1 |
⊢ ( ( 2 ∈ ℝ ∧ ( 2 ↑ 4 ) ∈ ℕ ∧ 1 < 2 ) → 1 < ( 2 ↑ ( 2 ↑ 4 ) ) ) |
14 |
9 11 12 13
|
mp3an |
⊢ 1 < ( 2 ↑ ( 2 ↑ 4 ) ) |
15 |
|
eluz2b2 |
⊢ ( ( 2 ↑ ( 2 ↑ 4 ) ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( ( 2 ↑ ( 2 ↑ 4 ) ) ∈ ℕ ∧ 1 < ( 2 ↑ ( 2 ↑ 4 ) ) ) ) |
16 |
8 14 15
|
mpbir2an |
⊢ ( 2 ↑ ( 2 ↑ 4 ) ) ∈ ( ℤ≥ ‘ 2 ) |
17 |
|
peano2uz |
⊢ ( ( 2 ↑ ( 2 ↑ 4 ) ) ∈ ( ℤ≥ ‘ 2 ) → ( ( 2 ↑ ( 2 ↑ 4 ) ) + 1 ) ∈ ( ℤ≥ ‘ 2 ) ) |
18 |
16 17
|
ax-mp |
⊢ ( ( 2 ↑ ( 2 ↑ 4 ) ) + 1 ) ∈ ( ℤ≥ ‘ 2 ) |
19 |
3 18
|
eqeltri |
⊢ ( FermatNo ‘ 4 ) ∈ ( ℤ≥ ‘ 2 ) |
20 |
|
elinel2 |
⊢ ( 𝑝 ∈ ( ( 2 ... ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) ) ∩ ℙ ) → 𝑝 ∈ ℙ ) |
21 |
20
|
adantr |
⊢ ( ( 𝑝 ∈ ( ( 2 ... ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) ) ∩ ℙ ) ∧ 𝑝 ∥ ( FermatNo ‘ 4 ) ) → 𝑝 ∈ ℙ ) |
22 |
|
simpr |
⊢ ( ( 𝑝 ∈ ( ( 2 ... ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) ) ∩ ℙ ) ∧ 𝑝 ∥ ( FermatNo ‘ 4 ) ) → 𝑝 ∥ ( FermatNo ‘ 4 ) ) |
23 |
|
elinel1 |
⊢ ( 𝑝 ∈ ( ( 2 ... ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) ) ∩ ℙ ) → 𝑝 ∈ ( 2 ... ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) ) ) |
24 |
|
elfzle2 |
⊢ ( 𝑝 ∈ ( 2 ... ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) ) → 𝑝 ≤ ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) ) |
25 |
23 24
|
syl |
⊢ ( 𝑝 ∈ ( ( 2 ... ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) ) ∩ ℙ ) → 𝑝 ≤ ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) ) |
26 |
25
|
adantr |
⊢ ( ( 𝑝 ∈ ( ( 2 ... ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) ) ∩ ℙ ) ∧ 𝑝 ∥ ( FermatNo ‘ 4 ) ) → 𝑝 ≤ ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) ) |
27 |
|
fmtno4prmfac193 |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( FermatNo ‘ 4 ) ∧ 𝑝 ≤ ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) ) → 𝑝 = ; ; 1 9 3 ) |
28 |
21 22 26 27
|
syl3anc |
⊢ ( ( 𝑝 ∈ ( ( 2 ... ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) ) ∩ ℙ ) ∧ 𝑝 ∥ ( FermatNo ‘ 4 ) ) → 𝑝 = ; ; 1 9 3 ) |
29 |
|
fmtno4nprmfac193 |
⊢ ¬ ; ; 1 9 3 ∥ ( FermatNo ‘ 4 ) |
30 |
|
breq1 |
⊢ ( 𝑝 = ; ; 1 9 3 → ( 𝑝 ∥ ( FermatNo ‘ 4 ) ↔ ; ; 1 9 3 ∥ ( FermatNo ‘ 4 ) ) ) |
31 |
29 30
|
mtbiri |
⊢ ( 𝑝 = ; ; 1 9 3 → ¬ 𝑝 ∥ ( FermatNo ‘ 4 ) ) |
32 |
28 31
|
syl |
⊢ ( ( 𝑝 ∈ ( ( 2 ... ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) ) ∩ ℙ ) ∧ 𝑝 ∥ ( FermatNo ‘ 4 ) ) → ¬ 𝑝 ∥ ( FermatNo ‘ 4 ) ) |
33 |
32
|
pm2.01da |
⊢ ( 𝑝 ∈ ( ( 2 ... ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) ) ∩ ℙ ) → ¬ 𝑝 ∥ ( FermatNo ‘ 4 ) ) |
34 |
33
|
rgen |
⊢ ∀ 𝑝 ∈ ( ( 2 ... ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) ) ∩ ℙ ) ¬ 𝑝 ∥ ( FermatNo ‘ 4 ) |
35 |
|
isprm7 |
⊢ ( ( FermatNo ‘ 4 ) ∈ ℙ ↔ ( ( FermatNo ‘ 4 ) ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑝 ∈ ( ( 2 ... ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) ) ∩ ℙ ) ¬ 𝑝 ∥ ( FermatNo ‘ 4 ) ) ) |
36 |
19 34 35
|
mpbir2an |
⊢ ( FermatNo ‘ 4 ) ∈ ℙ |