| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 4nn0 | ⊢ 4  ∈  ℕ0 | 
						
							| 2 |  | fmtno | ⊢ ( 4  ∈  ℕ0  →  ( FermatNo ‘ 4 )  =  ( ( 2 ↑ ( 2 ↑ 4 ) )  +  1 ) ) | 
						
							| 3 | 1 2 | ax-mp | ⊢ ( FermatNo ‘ 4 )  =  ( ( 2 ↑ ( 2 ↑ 4 ) )  +  1 ) | 
						
							| 4 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 5 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 6 | 5 1 | nn0expcli | ⊢ ( 2 ↑ 4 )  ∈  ℕ0 | 
						
							| 7 |  | nnexpcl | ⊢ ( ( 2  ∈  ℕ  ∧  ( 2 ↑ 4 )  ∈  ℕ0 )  →  ( 2 ↑ ( 2 ↑ 4 ) )  ∈  ℕ ) | 
						
							| 8 | 4 6 7 | mp2an | ⊢ ( 2 ↑ ( 2 ↑ 4 ) )  ∈  ℕ | 
						
							| 9 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 10 |  | nnexpcl | ⊢ ( ( 2  ∈  ℕ  ∧  4  ∈  ℕ0 )  →  ( 2 ↑ 4 )  ∈  ℕ ) | 
						
							| 11 | 4 1 10 | mp2an | ⊢ ( 2 ↑ 4 )  ∈  ℕ | 
						
							| 12 |  | 1lt2 | ⊢ 1  <  2 | 
						
							| 13 |  | expgt1 | ⊢ ( ( 2  ∈  ℝ  ∧  ( 2 ↑ 4 )  ∈  ℕ  ∧  1  <  2 )  →  1  <  ( 2 ↑ ( 2 ↑ 4 ) ) ) | 
						
							| 14 | 9 11 12 13 | mp3an | ⊢ 1  <  ( 2 ↑ ( 2 ↑ 4 ) ) | 
						
							| 15 |  | eluz2b2 | ⊢ ( ( 2 ↑ ( 2 ↑ 4 ) )  ∈  ( ℤ≥ ‘ 2 )  ↔  ( ( 2 ↑ ( 2 ↑ 4 ) )  ∈  ℕ  ∧  1  <  ( 2 ↑ ( 2 ↑ 4 ) ) ) ) | 
						
							| 16 | 8 14 15 | mpbir2an | ⊢ ( 2 ↑ ( 2 ↑ 4 ) )  ∈  ( ℤ≥ ‘ 2 ) | 
						
							| 17 |  | peano2uz | ⊢ ( ( 2 ↑ ( 2 ↑ 4 ) )  ∈  ( ℤ≥ ‘ 2 )  →  ( ( 2 ↑ ( 2 ↑ 4 ) )  +  1 )  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 18 | 16 17 | ax-mp | ⊢ ( ( 2 ↑ ( 2 ↑ 4 ) )  +  1 )  ∈  ( ℤ≥ ‘ 2 ) | 
						
							| 19 | 3 18 | eqeltri | ⊢ ( FermatNo ‘ 4 )  ∈  ( ℤ≥ ‘ 2 ) | 
						
							| 20 |  | elinel2 | ⊢ ( 𝑝  ∈  ( ( 2 ... ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) )  ∩  ℙ )  →  𝑝  ∈  ℙ ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝑝  ∈  ( ( 2 ... ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) )  ∩  ℙ )  ∧  𝑝  ∥  ( FermatNo ‘ 4 ) )  →  𝑝  ∈  ℙ ) | 
						
							| 22 |  | simpr | ⊢ ( ( 𝑝  ∈  ( ( 2 ... ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) )  ∩  ℙ )  ∧  𝑝  ∥  ( FermatNo ‘ 4 ) )  →  𝑝  ∥  ( FermatNo ‘ 4 ) ) | 
						
							| 23 |  | elinel1 | ⊢ ( 𝑝  ∈  ( ( 2 ... ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) )  ∩  ℙ )  →  𝑝  ∈  ( 2 ... ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) ) ) | 
						
							| 24 |  | elfzle2 | ⊢ ( 𝑝  ∈  ( 2 ... ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) )  →  𝑝  ≤  ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) ) | 
						
							| 25 | 23 24 | syl | ⊢ ( 𝑝  ∈  ( ( 2 ... ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) )  ∩  ℙ )  →  𝑝  ≤  ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( 𝑝  ∈  ( ( 2 ... ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) )  ∩  ℙ )  ∧  𝑝  ∥  ( FermatNo ‘ 4 ) )  →  𝑝  ≤  ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) ) | 
						
							| 27 |  | fmtno4prmfac193 | ⊢ ( ( 𝑝  ∈  ℙ  ∧  𝑝  ∥  ( FermatNo ‘ 4 )  ∧  𝑝  ≤  ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) )  →  𝑝  =  ; ; 1 9 3 ) | 
						
							| 28 | 21 22 26 27 | syl3anc | ⊢ ( ( 𝑝  ∈  ( ( 2 ... ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) )  ∩  ℙ )  ∧  𝑝  ∥  ( FermatNo ‘ 4 ) )  →  𝑝  =  ; ; 1 9 3 ) | 
						
							| 29 |  | fmtno4nprmfac193 | ⊢ ¬  ; ; 1 9 3  ∥  ( FermatNo ‘ 4 ) | 
						
							| 30 |  | breq1 | ⊢ ( 𝑝  =  ; ; 1 9 3  →  ( 𝑝  ∥  ( FermatNo ‘ 4 )  ↔  ; ; 1 9 3  ∥  ( FermatNo ‘ 4 ) ) ) | 
						
							| 31 | 29 30 | mtbiri | ⊢ ( 𝑝  =  ; ; 1 9 3  →  ¬  𝑝  ∥  ( FermatNo ‘ 4 ) ) | 
						
							| 32 | 28 31 | syl | ⊢ ( ( 𝑝  ∈  ( ( 2 ... ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) )  ∩  ℙ )  ∧  𝑝  ∥  ( FermatNo ‘ 4 ) )  →  ¬  𝑝  ∥  ( FermatNo ‘ 4 ) ) | 
						
							| 33 | 32 | pm2.01da | ⊢ ( 𝑝  ∈  ( ( 2 ... ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) )  ∩  ℙ )  →  ¬  𝑝  ∥  ( FermatNo ‘ 4 ) ) | 
						
							| 34 | 33 | rgen | ⊢ ∀ 𝑝  ∈  ( ( 2 ... ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) )  ∩  ℙ ) ¬  𝑝  ∥  ( FermatNo ‘ 4 ) | 
						
							| 35 |  | isprm7 | ⊢ ( ( FermatNo ‘ 4 )  ∈  ℙ  ↔  ( ( FermatNo ‘ 4 )  ∈  ( ℤ≥ ‘ 2 )  ∧  ∀ 𝑝  ∈  ( ( 2 ... ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 4 ) ) ) )  ∩  ℙ ) ¬  𝑝  ∥  ( FermatNo ‘ 4 ) ) ) | 
						
							| 36 | 19 34 35 | mpbir2an | ⊢ ( FermatNo ‘ 4 )  ∈  ℙ |