| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 4nn0 | ⊢ 4  ∈  ℕ0 | 
						
							| 2 |  | el1fzopredsuc | ⊢ ( 4  ∈  ℕ0  →  ( 𝑁  ∈  ( 0 ... 4 )  ↔  ( 𝑁  =  0  ∨  𝑁  ∈  ( 1 ..^ 4 )  ∨  𝑁  =  4 ) ) ) | 
						
							| 3 | 1 2 | ax-mp | ⊢ ( 𝑁  ∈  ( 0 ... 4 )  ↔  ( 𝑁  =  0  ∨  𝑁  ∈  ( 1 ..^ 4 )  ∨  𝑁  =  4 ) ) | 
						
							| 4 |  | fveq2 | ⊢ ( 𝑁  =  0  →  ( FermatNo ‘ 𝑁 )  =  ( FermatNo ‘ 0 ) ) | 
						
							| 5 |  | fmtno0prm | ⊢ ( FermatNo ‘ 0 )  ∈  ℙ | 
						
							| 6 | 4 5 | eqeltrdi | ⊢ ( 𝑁  =  0  →  ( FermatNo ‘ 𝑁 )  ∈  ℙ ) | 
						
							| 7 |  | eltpi | ⊢ ( 𝑁  ∈  { 1 ,  2 ,  3 }  →  ( 𝑁  =  1  ∨  𝑁  =  2  ∨  𝑁  =  3 ) ) | 
						
							| 8 |  | fveq2 | ⊢ ( 𝑁  =  1  →  ( FermatNo ‘ 𝑁 )  =  ( FermatNo ‘ 1 ) ) | 
						
							| 9 |  | fmtno1prm | ⊢ ( FermatNo ‘ 1 )  ∈  ℙ | 
						
							| 10 | 8 9 | eqeltrdi | ⊢ ( 𝑁  =  1  →  ( FermatNo ‘ 𝑁 )  ∈  ℙ ) | 
						
							| 11 |  | fveq2 | ⊢ ( 𝑁  =  2  →  ( FermatNo ‘ 𝑁 )  =  ( FermatNo ‘ 2 ) ) | 
						
							| 12 |  | fmtno2prm | ⊢ ( FermatNo ‘ 2 )  ∈  ℙ | 
						
							| 13 | 11 12 | eqeltrdi | ⊢ ( 𝑁  =  2  →  ( FermatNo ‘ 𝑁 )  ∈  ℙ ) | 
						
							| 14 |  | fveq2 | ⊢ ( 𝑁  =  3  →  ( FermatNo ‘ 𝑁 )  =  ( FermatNo ‘ 3 ) ) | 
						
							| 15 |  | fmtno3prm | ⊢ ( FermatNo ‘ 3 )  ∈  ℙ | 
						
							| 16 | 14 15 | eqeltrdi | ⊢ ( 𝑁  =  3  →  ( FermatNo ‘ 𝑁 )  ∈  ℙ ) | 
						
							| 17 | 10 13 16 | 3jaoi | ⊢ ( ( 𝑁  =  1  ∨  𝑁  =  2  ∨  𝑁  =  3 )  →  ( FermatNo ‘ 𝑁 )  ∈  ℙ ) | 
						
							| 18 | 7 17 | syl | ⊢ ( 𝑁  ∈  { 1 ,  2 ,  3 }  →  ( FermatNo ‘ 𝑁 )  ∈  ℙ ) | 
						
							| 19 |  | fzo1to4tp | ⊢ ( 1 ..^ 4 )  =  { 1 ,  2 ,  3 } | 
						
							| 20 | 18 19 | eleq2s | ⊢ ( 𝑁  ∈  ( 1 ..^ 4 )  →  ( FermatNo ‘ 𝑁 )  ∈  ℙ ) | 
						
							| 21 |  | fveq2 | ⊢ ( 𝑁  =  4  →  ( FermatNo ‘ 𝑁 )  =  ( FermatNo ‘ 4 ) ) | 
						
							| 22 |  | fmtno4prm | ⊢ ( FermatNo ‘ 4 )  ∈  ℙ | 
						
							| 23 | 21 22 | eqeltrdi | ⊢ ( 𝑁  =  4  →  ( FermatNo ‘ 𝑁 )  ∈  ℙ ) | 
						
							| 24 | 6 20 23 | 3jaoi | ⊢ ( ( 𝑁  =  0  ∨  𝑁  ∈  ( 1 ..^ 4 )  ∨  𝑁  =  4 )  →  ( FermatNo ‘ 𝑁 )  ∈  ℙ ) | 
						
							| 25 | 3 24 | sylbi | ⊢ ( 𝑁  ∈  ( 0 ... 4 )  →  ( FermatNo ‘ 𝑁 )  ∈  ℙ ) |