| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elfzelz | ⊢ ( 𝐼  ∈  ( 0 ... 𝑁 )  →  𝐼  ∈  ℤ ) | 
						
							| 2 |  | 1fzopredsuc | ⊢ ( 𝑁  ∈  ℕ0  →  ( 0 ... 𝑁 )  =  ( ( { 0 }  ∪  ( 1 ..^ 𝑁 ) )  ∪  { 𝑁 } ) ) | 
						
							| 3 | 2 | eleq2d | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝐼  ∈  ( 0 ... 𝑁 )  ↔  𝐼  ∈  ( ( { 0 }  ∪  ( 1 ..^ 𝑁 ) )  ∪  { 𝑁 } ) ) ) | 
						
							| 4 |  | elun | ⊢ ( 𝐼  ∈  ( ( { 0 }  ∪  ( 1 ..^ 𝑁 ) )  ∪  { 𝑁 } )  ↔  ( 𝐼  ∈  ( { 0 }  ∪  ( 1 ..^ 𝑁 ) )  ∨  𝐼  ∈  { 𝑁 } ) ) | 
						
							| 5 |  | elun | ⊢ ( 𝐼  ∈  ( { 0 }  ∪  ( 1 ..^ 𝑁 ) )  ↔  ( 𝐼  ∈  { 0 }  ∨  𝐼  ∈  ( 1 ..^ 𝑁 ) ) ) | 
						
							| 6 | 5 | orbi1i | ⊢ ( ( 𝐼  ∈  ( { 0 }  ∪  ( 1 ..^ 𝑁 ) )  ∨  𝐼  ∈  { 𝑁 } )  ↔  ( ( 𝐼  ∈  { 0 }  ∨  𝐼  ∈  ( 1 ..^ 𝑁 ) )  ∨  𝐼  ∈  { 𝑁 } ) ) | 
						
							| 7 | 4 6 | bitri | ⊢ ( 𝐼  ∈  ( ( { 0 }  ∪  ( 1 ..^ 𝑁 ) )  ∪  { 𝑁 } )  ↔  ( ( 𝐼  ∈  { 0 }  ∨  𝐼  ∈  ( 1 ..^ 𝑁 ) )  ∨  𝐼  ∈  { 𝑁 } ) ) | 
						
							| 8 |  | elsng | ⊢ ( 𝐼  ∈  ℤ  →  ( 𝐼  ∈  { 0 }  ↔  𝐼  =  0 ) ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐼  ∈  ℤ )  →  ( 𝐼  ∈  { 0 }  ↔  𝐼  =  0 ) ) | 
						
							| 10 | 9 | orbi1d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐼  ∈  ℤ )  →  ( ( 𝐼  ∈  { 0 }  ∨  𝐼  ∈  ( 1 ..^ 𝑁 ) )  ↔  ( 𝐼  =  0  ∨  𝐼  ∈  ( 1 ..^ 𝑁 ) ) ) ) | 
						
							| 11 |  | elsng | ⊢ ( 𝐼  ∈  ℤ  →  ( 𝐼  ∈  { 𝑁 }  ↔  𝐼  =  𝑁 ) ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐼  ∈  ℤ )  →  ( 𝐼  ∈  { 𝑁 }  ↔  𝐼  =  𝑁 ) ) | 
						
							| 13 | 10 12 | orbi12d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐼  ∈  ℤ )  →  ( ( ( 𝐼  ∈  { 0 }  ∨  𝐼  ∈  ( 1 ..^ 𝑁 ) )  ∨  𝐼  ∈  { 𝑁 } )  ↔  ( ( 𝐼  =  0  ∨  𝐼  ∈  ( 1 ..^ 𝑁 ) )  ∨  𝐼  =  𝑁 ) ) ) | 
						
							| 14 | 7 13 | bitrid | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐼  ∈  ℤ )  →  ( 𝐼  ∈  ( ( { 0 }  ∪  ( 1 ..^ 𝑁 ) )  ∪  { 𝑁 } )  ↔  ( ( 𝐼  =  0  ∨  𝐼  ∈  ( 1 ..^ 𝑁 ) )  ∨  𝐼  =  𝑁 ) ) ) | 
						
							| 15 |  | df-3or | ⊢ ( ( 𝐼  =  0  ∨  𝐼  ∈  ( 1 ..^ 𝑁 )  ∨  𝐼  =  𝑁 )  ↔  ( ( 𝐼  =  0  ∨  𝐼  ∈  ( 1 ..^ 𝑁 ) )  ∨  𝐼  =  𝑁 ) ) | 
						
							| 16 | 15 | biimpri | ⊢ ( ( ( 𝐼  =  0  ∨  𝐼  ∈  ( 1 ..^ 𝑁 ) )  ∨  𝐼  =  𝑁 )  →  ( 𝐼  =  0  ∨  𝐼  ∈  ( 1 ..^ 𝑁 )  ∨  𝐼  =  𝑁 ) ) | 
						
							| 17 | 14 16 | biimtrdi | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐼  ∈  ℤ )  →  ( 𝐼  ∈  ( ( { 0 }  ∪  ( 1 ..^ 𝑁 ) )  ∪  { 𝑁 } )  →  ( 𝐼  =  0  ∨  𝐼  ∈  ( 1 ..^ 𝑁 )  ∨  𝐼  =  𝑁 ) ) ) | 
						
							| 18 | 17 | ex | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝐼  ∈  ℤ  →  ( 𝐼  ∈  ( ( { 0 }  ∪  ( 1 ..^ 𝑁 ) )  ∪  { 𝑁 } )  →  ( 𝐼  =  0  ∨  𝐼  ∈  ( 1 ..^ 𝑁 )  ∨  𝐼  =  𝑁 ) ) ) ) | 
						
							| 19 | 18 | com23 | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝐼  ∈  ( ( { 0 }  ∪  ( 1 ..^ 𝑁 ) )  ∪  { 𝑁 } )  →  ( 𝐼  ∈  ℤ  →  ( 𝐼  =  0  ∨  𝐼  ∈  ( 1 ..^ 𝑁 )  ∨  𝐼  =  𝑁 ) ) ) ) | 
						
							| 20 | 3 19 | sylbid | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝐼  ∈  ( 0 ... 𝑁 )  →  ( 𝐼  ∈  ℤ  →  ( 𝐼  =  0  ∨  𝐼  ∈  ( 1 ..^ 𝑁 )  ∨  𝐼  =  𝑁 ) ) ) ) | 
						
							| 21 | 1 20 | mpdi | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝐼  ∈  ( 0 ... 𝑁 )  →  ( 𝐼  =  0  ∨  𝐼  ∈  ( 1 ..^ 𝑁 )  ∨  𝐼  =  𝑁 ) ) ) | 
						
							| 22 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 23 | 22 | snid | ⊢ 0  ∈  { 0 } | 
						
							| 24 | 23 | a1i | ⊢ ( 𝐼  =  0  →  0  ∈  { 0 } ) | 
						
							| 25 |  | eleq1 | ⊢ ( 𝐼  =  0  →  ( 𝐼  ∈  { 0 }  ↔  0  ∈  { 0 } ) ) | 
						
							| 26 | 24 25 | mpbird | ⊢ ( 𝐼  =  0  →  𝐼  ∈  { 0 } ) | 
						
							| 27 | 26 | a1i | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝐼  =  0  →  𝐼  ∈  { 0 } ) ) | 
						
							| 28 |  | idd | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝐼  ∈  ( 1 ..^ 𝑁 )  →  𝐼  ∈  ( 1 ..^ 𝑁 ) ) ) | 
						
							| 29 |  | snidg | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  { 𝑁 } ) | 
						
							| 30 |  | eleq1 | ⊢ ( 𝐼  =  𝑁  →  ( 𝐼  ∈  { 𝑁 }  ↔  𝑁  ∈  { 𝑁 } ) ) | 
						
							| 31 | 29 30 | syl5ibrcom | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝐼  =  𝑁  →  𝐼  ∈  { 𝑁 } ) ) | 
						
							| 32 | 27 28 31 | 3orim123d | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 𝐼  =  0  ∨  𝐼  ∈  ( 1 ..^ 𝑁 )  ∨  𝐼  =  𝑁 )  →  ( 𝐼  ∈  { 0 }  ∨  𝐼  ∈  ( 1 ..^ 𝑁 )  ∨  𝐼  ∈  { 𝑁 } ) ) ) | 
						
							| 33 | 32 | imp | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐼  =  0  ∨  𝐼  ∈  ( 1 ..^ 𝑁 )  ∨  𝐼  =  𝑁 ) )  →  ( 𝐼  ∈  { 0 }  ∨  𝐼  ∈  ( 1 ..^ 𝑁 )  ∨  𝐼  ∈  { 𝑁 } ) ) | 
						
							| 34 |  | df-3or | ⊢ ( ( 𝐼  ∈  { 0 }  ∨  𝐼  ∈  ( 1 ..^ 𝑁 )  ∨  𝐼  ∈  { 𝑁 } )  ↔  ( ( 𝐼  ∈  { 0 }  ∨  𝐼  ∈  ( 1 ..^ 𝑁 ) )  ∨  𝐼  ∈  { 𝑁 } ) ) | 
						
							| 35 | 33 34 | sylib | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐼  =  0  ∨  𝐼  ∈  ( 1 ..^ 𝑁 )  ∨  𝐼  =  𝑁 ) )  →  ( ( 𝐼  ∈  { 0 }  ∨  𝐼  ∈  ( 1 ..^ 𝑁 ) )  ∨  𝐼  ∈  { 𝑁 } ) ) | 
						
							| 36 | 35 7 | sylibr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐼  =  0  ∨  𝐼  ∈  ( 1 ..^ 𝑁 )  ∨  𝐼  =  𝑁 ) )  →  𝐼  ∈  ( ( { 0 }  ∪  ( 1 ..^ 𝑁 ) )  ∪  { 𝑁 } ) ) | 
						
							| 37 | 3 | adantr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐼  =  0  ∨  𝐼  ∈  ( 1 ..^ 𝑁 )  ∨  𝐼  =  𝑁 ) )  →  ( 𝐼  ∈  ( 0 ... 𝑁 )  ↔  𝐼  ∈  ( ( { 0 }  ∪  ( 1 ..^ 𝑁 ) )  ∪  { 𝑁 } ) ) ) | 
						
							| 38 | 36 37 | mpbird | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝐼  =  0  ∨  𝐼  ∈  ( 1 ..^ 𝑁 )  ∨  𝐼  =  𝑁 ) )  →  𝐼  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 39 | 38 | ex | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 𝐼  =  0  ∨  𝐼  ∈  ( 1 ..^ 𝑁 )  ∨  𝐼  =  𝑁 )  →  𝐼  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 40 | 21 39 | impbid | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝐼  ∈  ( 0 ... 𝑁 )  ↔  ( 𝐼  =  0  ∨  𝐼  ∈  ( 1 ..^ 𝑁 )  ∨  𝐼  =  𝑁 ) ) ) |