| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elnn0uz | ⊢ ( 𝑁  ∈  ℕ0  ↔  𝑁  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 2 |  | fzopredsuc | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 0 )  →  ( 0 ... 𝑁 )  =  ( ( { 0 }  ∪  ( ( 0  +  1 ) ..^ 𝑁 ) )  ∪  { 𝑁 } ) ) | 
						
							| 3 |  | 0p1e1 | ⊢ ( 0  +  1 )  =  1 | 
						
							| 4 | 3 | oveq1i | ⊢ ( ( 0  +  1 ) ..^ 𝑁 )  =  ( 1 ..^ 𝑁 ) | 
						
							| 5 | 4 | uneq2i | ⊢ ( { 0 }  ∪  ( ( 0  +  1 ) ..^ 𝑁 ) )  =  ( { 0 }  ∪  ( 1 ..^ 𝑁 ) ) | 
						
							| 6 | 5 | uneq1i | ⊢ ( ( { 0 }  ∪  ( ( 0  +  1 ) ..^ 𝑁 ) )  ∪  { 𝑁 } )  =  ( ( { 0 }  ∪  ( 1 ..^ 𝑁 ) )  ∪  { 𝑁 } ) | 
						
							| 7 | 2 6 | eqtrdi | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 0 )  →  ( 0 ... 𝑁 )  =  ( ( { 0 }  ∪  ( 1 ..^ 𝑁 ) )  ∪  { 𝑁 } ) ) | 
						
							| 8 | 1 7 | sylbi | ⊢ ( 𝑁  ∈  ℕ0  →  ( 0 ... 𝑁 )  =  ( ( { 0 }  ∪  ( 1 ..^ 𝑁 ) )  ∪  { 𝑁 } ) ) |