Metamath Proof Explorer


Theorem fmtno0prm

Description: The 0 th Fermat number is a prime (_first Fermat prime_). (Contributed by AV, 13-Jun-2021)

Ref Expression
Assertion fmtno0prm ( FermatNo ‘ 0 ) ∈ ℙ

Proof

Step Hyp Ref Expression
1 fmtno0 ( FermatNo ‘ 0 ) = 3
2 3prm 3 ∈ ℙ
3 1 2 eqeltri ( FermatNo ‘ 0 ) ∈ ℙ