Metamath Proof Explorer


Theorem fmtno1prm

Description: The 1 st Fermat number is a prime (_second Fermat prime_). (Contributed by AV, 13-Jun-2021)

Ref Expression
Assertion fmtno1prm ( FermatNo ‘ 1 ) ∈ ℙ

Proof

Step Hyp Ref Expression
1 fmtno1 ( FermatNo ‘ 1 ) = 5
2 5prm 5 ∈ ℙ
3 1 2 eqeltri ( FermatNo ‘ 1 ) ∈ ℙ