Metamath Proof Explorer


Theorem fmtno2prm

Description: The 2 nd Fermat number is a prime (_third Fermat prime_). (Contributed by AV, 13-Jun-2021)

Ref Expression
Assertion fmtno2prm ( FermatNo ‘ 2 ) ∈ ℙ

Proof

Step Hyp Ref Expression
1 fmtno2 ( FermatNo ‘ 2 ) = 1 7
2 17prm 1 7 ∈ ℙ
3 1 2 eqeltri ( FermatNo ‘ 2 ) ∈ ℙ